Amyloid Structure and Properties and Its Relation to Human Diseases

Natalia Lisitza

Abstract


Amyloid – a fibrillar, cross β-sheet quaternary structure –was first discovered and associated with a great variety of human diseases (Alzheimer’s, Parkinson’s, prion, diabetes, cataracts, etc.). It is believed that the misfolding and aggregation of amyloid proteins are responsible for the appearance and progression of these diseases. Protein aggregation is a highly complex process resulting in a variety of aggregates with different structures and morphologies. Oligomeric protein aggregates (amyloid oligomers) are formed as both intermediates and final products of the aggregation process. They are believed to play an important role in many protein aggregation-related diseases, and many of them are highly cytotoxic. Due to their instability and structural heterogeneity, information about structure, mechanism of formation, and physiological effects of amyloid oligomers is sparse. Here we review the molecular properties of amyloid proteins and relate them to the pathological conditions and the appearance of various diseases. We show how the structure of the amyloid protein at different hierarchical levels (from backbone to fibrills) is representative to the pathological changes that appear at the disease and how it can be potentially be employed to monitor the disease progression. We also review the cytotoxicity of the amyloid proteins and discuss how it might be related to the structure. In conclusion, we delineate the intervention strategies that prevent amyloid formation.

Full Text:

PDF

References


Chiti, F. and Dobson, C.M. (2006) Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333–366.

Mukherjee, A., Morales-Scheihing, D., Butler, P.C. and Soto, C. (2015) Type 2 diabetes as a protein misfolding disease. Trends Mol. Med. 21, 439–449.

Verma, M., Vats, A. and Taneja, V. (2015) Toxic species in amyloid disorders: oligomers or mature fibrils. Ann. Indian Acad. Neurol. 18, 138–145.

Maji, S.K. et al. (2009) Functional amyloids as natural storage of peptide hormones in pituitary secretory granules. Science 325, 328–332.

Si, K., Lindquist, S. and Kandel, E.R. (2003) A neuronal isoform of the aplysia CPEB has prion-like properties. Cell 115, 879–891.

Bailey, C.H., Kandel, E.R. and Si, K. (2004). The persistence of long-term memory: a molecular approach to self-sustaining changes in learninginduced synaptic growth. Neuron 44, 49–57.

Si, K., Choi, Y.B., White-Grindley, E., Majumdar, A. and Kandel, E.R. (2010) Aplysia CPEB can form prion-like multimers in sensory neurons that contribute to long-term facilitation. Cell 140, 421–435.

Eisenberg, D. and Jucker, M. (2012). The Amyloid State of Proteins in Human Diseases. Cell 148, 1188– 1203.

Benzinger, T.L., Gregory, D.M., Burkoth, T.S., Miller-Auer, H., Lynn, D.G., Botto, R.E., and Meredith, S.C. (1998). Propagating structure of Alzheimer’s beta-amyloid (10-35) is parallel beta-sheet with residues in exact register. Proc. Natl. Acad. Sci. USA 95, 13407–13412.

Tycko, R. (2011). Solid-state NMR studies of amyloid fibril structure. Annu. Rev. Phys. Chem. 62,

–299.

Makin, O.S., Atkins, E., Sikorski, P., Johansson, J., and Serpell, L.C. (2005). Molecular basis for amyloid fibril formation and stability. Proc. Natl. Acad. Sci. USA 102, 315–320.

Sunde, M., and Blake, C.C. (1998). From the globular to the fibrous state: protein structure and structural conversion in amyloid formation. Q. Rev. Biophys. 31, 1–39.

Serag, A.A., Altenbach, C., Gingery, M., Hubbell, W.L., and Yeates, T.O. (2001). Identification of a subunit interface in transthyretin amyloid fibrils: evidence for self-assembly from oligomeric building blocks. Biochemistry 40, 9089–9096.

Török, M., Milton, S., Kayed, R., Wu, P., McIntire, T., Glabe, C.G., and Langen, R. (2002). Structural and dynamic features of Alzheimer’s Abeta peptide inamyloid fibrils studied by site-directed spin labeling. J. Biol. Chem. 277, 40810–40815.

Jiménez, J.L., Guijarro, J.I., Orlova, E., Zurdo, J., Dobson, C.M., Sunde, M. and Saibil, H.R. (1999). Cryo-electron microscopy structure of an SH3 amyloid fibril and model of the molecular packing. EMBO J. 18, 815–821.

Schmidt, M., Sachse, C., Richter, W., Xu, C., Fa¨ndrich, M., and Grigorieff, N. (2009). Comparison of Alzheimer Abeta(1-40) and Abeta(1-42) amyloid fibrils reveals similar protofilament structures. Proc. Natl. Acad. Sci. USA 106, 19813–19818.

Williams, A.D., Portelius, E., Kheterpal, I., Guo, J.T., Cook, K.D., Xu, Y., and Wetzel, R. (2004). Mapping abeta amyloid fibril secondary structure using scanning proline mutagenesis. J. Mol. Biol. 335, 833–842.

Nelson, R., Sawaya, M.R., Balbirnie, M., Madsen, A.O., Riekel, C., Grothe, R., and Eisenberg, D. (2005). Structure of the cross-beta spine of amyloid-like fibrils. Nature 435, 773–778.

Nilsson MR. 2004. Methods 34:151–60

Apostol, M.I., Sawaya, M.R., Cascio, D., and Eisenberg, D. (2010). Crystallographic studies of prion protein (PrP) segments suggest how structural changes encoded by polymorphism at residue 129 modulate susceptibility to human prion disease. J. Biol. Chem. 285, 29671–29675.

Ivanova, M.I., Sievers, S.A., Sawaya, M.R., Wall, J.S., and Eisenberg, D. (2009). Molecular basis for insulin fibril assembly. Proc. Natl. Acad. Sci. USA 106, 18990–18995.

Sawaya, M.R., Sambashivan, S., Nelson, R., Ivanova, M.I., Sievers, S.A., Apostol, M.I., Thompson, M.J., Balbirnie, M., Wiltzius, J.J., McFarlane, H.T., et al. (2007). Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature 447, 453–457.

Sievers, S.A., Karanicolas, J., Chang, H.W., Zhao, A., Jiang, L., Zirafi, O., Stevens, J.T., Mu¨nch, J., Baker, D., and Eisenberg, D. (2011). Structure-based design of non-natural amino-acid inhibitors of amyloid fibril formation. Nature 475, 96–100.

Wiltzius, J.J., Landau, M., Nelson, R., Sawaya, M.R., Apostol, M.I., Goldschmidt, L., Soriaga, A.B., Cascio, D., Rajashankar, K., and Eisenberg, D. (2009). Molecular mechanisms for protein-encoded inheritance. Nat. Struct. Mol. Biol. 16, 973–978.

Balbirnie, M., Grothe, R., and Eisenberg, D.S. (2001). An amyloid-forming peptide from the yeast prion Sup35 reveals a dehydrated beta-sheet structure for amyloid. Proc. Natl. Acad. Sci. USA 98, 2375–2380.

Tsemekhman, K., Goldschmidt, L., Eisenberg, D., and Baker, D. (2007). Cooperative hydrogen bonding in amyloid formation. Protein Sci. 16, 761–764.

Lührs, T., Ritter, C., Adrian, M., Riek-Loher, D., Bohrmann, B., Do¨ beli, H.,Schubert, D., and Riek, R. (2005). 3D structure of Alzheimer’s amyloidbeta (1-42) fibrils. Proc. Natl. Acad. Sci. USA 102, 17342– 17347.

Petkova, A.T., Ishii, Y., Balbach, J.J., Antzutkin, O.N., Leapman, R.D., Delaglio, F., and Tycko, R. (2002). A structural model for Alzheimer’s beta-amyloid fibrils based on experimental constraints from solid state NMR. Proc. Natl. Acad. Sci. USA 99, 16742–16747.

Colletier, J.P., Laganowsky, A., Landau, M., Zhao, M., Soriaga, A.B., Goldschmidt, L., Flot, D., Cascio, D., Sawaya, M.R., and Eisenberg, D. (2011). Molecular basis for amyloid-beta polymorphism. Proc. Natl. Acad. Sci. USA 108, 16938–16943.

Lewandowski, J.R., van der Wel, P.C., Rigney, M., Grigorieff, N., and Griffin, R.G. (2011). Structural complexity of a composite amyloid fibril. J. Am. Chem. Soc. 133, 14686–14698.

Wasmer, C., Lange, A., Van Melckebeke, H., Siemer, A.B., Riek, R., and Meier, B.H. (2008). Amyloid fibrils of the HET-s (218-289) prion form a beta solenoid with a triangular hydrophobic core. Science 319, 1523–1526.

White, H.E., Hodgkinson, J.L., Jahn, T.R., Cohen-Krausz, S., Gosal, W.S., Müller, S., Orlova, E.V., Radford, S.E., and Saibil, H.R. (2009). Globular tetramers of beta (2)-microglobulin assemble into elaborate amyloid fibrils. J. Mol. Biol. 389, 48–57.

Kajava, A.V., Baxa, U., and Steven, A.C. (2010). Beta arcades: recurring motifs in naturally occurring and disease-related amyloid fibrils. FASEB J. 24, 1311–1319.

Sambashivan, S., Liu, Y., Sawaya, M.R., Gingery, M., and Eisenberg, D. (2005). Amyloid-like fibrils of ribonuclease A with three-dimensional domain-swapped and native-like structure. Nature 437, 266–269.

Andreetto, E., Yan, L.M., Tatarek-Nossol, M., Velkova, A., Frank, R., and Kapurniotu, A. (2010). Identification of hot regions of the Abeta-IAPP interaction interface as high-affinity binding sites in both cross- and self-association. Angew. Chem. Int. Ed. Engl. 49, 3081–3085.

Giasson, B.I., Forman, M.S., Higuchi, M., Golbe, L.I., Graves, C.L., Kotzbauer, P.T., Trojanowski, J.Q., and Lee, V.M. (2003). Initiation and synergistic fibrillization of tau and alpha-synuclein. Science 300, 636–640.

Morales, R., Estrada, L.D., Diaz-Espinoza, R., Morales-Scheihing, D., Jara, M.C., Castilla, J., and Soto, C. (2010). Molecular cross talk between misfolded proteins in animal models of Alzheimer’s and prion diseases. J. Neurosci. 30, 4528–4535.

Kaeser, S.A., Herzig, M.C., Coomaraswamy, J., Kilger, E., Selenica, M.L., Winkler, D.T., Staufenbiel, M., Levy, E., Grubb, A., and Jucker, M. (2007). Cystatin C modulates cerebral beta-amyloidosis. Nat. Genet. 39, 1437–1439.

Greenwald, J., and Riek, R. (2010). Biology of amyloid: structure, function, and regulation. Structure 18, 1244–1260.

Tanaka, M., Chien, P., Naber, N., Cooke, R., and Weissman, J.S. (2004). Conformational variations in an infectious protein determine prion strain differences. Nature 428, 323–328.

Maarouf, C.L., Daugs, I.D., Spina, S., Vidal, R., Kokjohn, T.A., Patton, R.L., Kalback, W.M., Luehrs, D.C., Walker, D.G., Castan˜ o, E.M., et al. (2008). Histopathological and molecular heterogeneity among individuals with dementia associated with Presenilin mutations. Mol. Neurodegener. 3, 20.

Tekirian, T.L., Saido, T.C., Markesbery, W.R., Russell, M.J., Wekstein, D.R., Patel, E., and Geddes, J.W. (1998). N-terminal heterogeneity of parenchymal and cerebrovascular Abeta deposits. J. Neuropathol. Exp. Neurol. 57, 76–94.

Thal, D.R., Capetillo-Zarate, E., Del Tredici, K., and Braak, H. (2006). The development of amyloid beta protein deposits in the aged brain. Sci Aging Knowledge Environ. 2006, re1.

Herzig, M.C., Van Nostrand, W.E., and Jucker, M. (2006). Mechanism of cerebral beta-amyloid angiopathy: murine and cellular models. Brain Pathol. 16, 40–54.

Duering, M., Grimm, M.O., Grimm, H.S., Schro¨ der, J., and Hartmann, T. (2005). Mean age of onset in familial Alzheimer’s disease is determined by amyloid beta 42. Neurobiol. Aging 26, 785–788.

Kumar-Singh, S., Theuns, J., Van Broeck, B., Pirici, D., Vennekens, K., Corsmit, E., Cruts, M., Dermaut, B., Wang, R., and Van Broeckhoven, C. (2006). Mean age-of-onset of familial alzheimer disease caused by presenilin mutations correlates with both increased Abeta42 and decreased Abeta40. Hum. Mutat. 27, 686–695.

Kuperstein, I., Broersen, K., Benilova, I., Rozenski, J., Jonckheere, W., Debulpaep, M., Vandersteen, A., Segers-Nolten, I., Van Der Werf, K., Subramaniam, V., et al. (2010). Neurotoxicity of Alzheimer’s disease Ab peptides is induced by small changes in the Ab42 to Ab40 ratio. EMBO J. 29, 3408–3420.

De Strooper, B. (2010). Proteases and proteolysis in Alzheimer disease: amulti-factorial view on the disease process. Physiol. Rev. 90, 465–494.

Kumar, S., Rezaei-Ghaleh, N., Terwel, D., Thal, D.R., Richard, M., Hoch, M., Mc Donald, J.M., Wüllner, U., Glebov, K., Heneka, M.T., et al. (2011). Extracellular phosphorylation of the amyloid b-peptide promotes formation of toxic aggregates during the pathogenesis of Alzheimer’s disease. EMBO J.

, 2255–2265.

Kummer, M.P., Hermes, M., Delekarte, A., Hammerschmidt, T., Kumar, S., Terwel, D., Walter, J., Pape, H.C., König, S., Roeber, S., et al. (2011). Nitration of tyrosine 10 critically enhances amyloid b aggregation and plaque formation. Neuron 71, 833–844.

Miravalle, L., Calero, M., Takao, M., Roher, A.E., Ghetti, B., and Vidal, R. (2005). Amino-terminally truncated Abeta peptide species are the main component of cotton wool plaques. Biochemistry 44, 10810– 10821.

Kuo, Y.M., Kokjohn, T.A., Beach, T.G., Sue, L.I., Brune, D., Lopez, J.C., Kalback, W.M., Abramowski, D., Sturchler-Pierrat, C., Staufenbiel, M., and Roher, A.E. (2001). Comparative analysis of amyloid-beta chemical structure and amyloid plaque morphology of transgenic mouse and Alzheimer’s disease brains. J. Biol. Chem. 276, 12991–12998.

Piccini, A., Russo, C., Gliozzi, A., Relini, A., Vitali, A., Borghi, R., Giliberto, L., Armirotti, A., D’Arrigo, C., Bachi, A., et al. (2005). beta-amyloid is different in normal aging and in Alzheimer disease. J. Biol. Chem. 280, 34186–34192.

Nilsson, K.P., Aslund, A., Berg, I., Nystro¨ m, S., Konradsson, P., Herland, A., Inganas, O., Stabo-Eeg, F., Lindgren, M., Westermark, G.T., et al. (2007). Imaging distinct conformational states of amyloid-beta fibrils in Alzheimer’s disease using novel luminescent probes. ACS Chem. Biol. 2, 553–560.

Levine, H., 3rd, and Walker, L.C. (2010). Molecular polymorphism of Abeta in,Alzheimer’s disease.

Neurobiol. Aging 31, 542–548.

Westermark, G.T., and Westermark, P. (2010). Prion-like aggregates: infectious agents in human disease. Trends Mol. Med. 16, 501–507.

Westermark, G.T., Sletten, K., and Westermark, P. (1989). Massive vascular AA-amyloidosis: a histologically and biochemically distinctive subtype of reactive systemic amyloidosis. Scand. J. Immunol. 30, 605–613.

Goedert, M., Clavaguera, F., and Tolnay, M. (2010). The propagation of prion-like protein inclusions in neurodegenerative diseases. Trends Neurosci. 33, 317–325.

Frost, B., Ollesch, J., Wille, H., and Diamond, M.I. (2009). Conformational diversity of wild-type Tau fibrils specified by templated conformation change. J. Biol. Chem. 284, 3546–3551.

Heise, H., Hoyer, W., Becker, S., Andronesi, O.C., Riedel, D., and Baldus, M. (2005). Molecular-level secondary structure, polymorphism, and dynamics of full-length alpha-synuclein fibrils studied by solid-state NMR. Proc. Natl. Acad. Sci. USA 102, 15871–15876.

Chapman, M.R., Robinson, L.S., Pinkner, J.S., Roth, R., Heuser, J., Hammar, M., Normark, S., and Hultgren, S.J. (2002). Role of Escherichia coli curli-operons in directing amyloid fiber formation. Science 295, 851–855.

Fowler, D.M., Koulov, A.V., Balch, W.E., and Kelly, J.W. (2007). Functional amyloid—from bacteria to humans. Trends Biochem. Sci. 32, 217–224.

Hou, F., Sun, L., Zheng, H., Skaug, B., Jiang, Q.X., and Chen, Z.J. (2011). MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell 146, 448–461.

Watt, B., Tenza, D., Lemmon, M.A., Kerje, S., Raposo, G., Andersson, L., and Marks, M.S. (2011). Mutations in or near the transmembrane domain alter PMEL amyloid formation from functional to pathogenic. PLoS Genet. 7, e1002286.

Selkoe, D.J. (2003). Folding proteins in fatal ways. Nature 426, 900–904.

Olzscha, H., Schermann, S.M., Woerner, A.C., Pinkert, S., Hecht, M.H., Tartaglia, G.G., Vendruscolo, M., Hayer-Hartl, M., Hartl, F.U., and Vabulas, R.M. (2011). Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions. Cell 144, 67–78.

Cohen, A.S., and Calkins, E. (1959). Electron microscopic observations on a fibrous component in amyloid of diverse origins. Nature 183, 1202–1203.

Pepys, M.B., Herbert, J., Hutchinson, W.L., Tennent, G.A., Lachmann, H.J., Gallimore, J.R., Lovat, L.B., Bartfai, T., Alanine, A., Hertel, C., et al. (2002). Targeted pharmacological depletion of serum amyloid P component for treatment of human amyloidosis. Nature 417, 254–259.

Westermark, P. (2005). Aspects on human amyloid forms and their fibril polypeptides. FEBS J. 272, 5942–5949.

Revesz, T., Holton, J.L., Lashley, T., Plant, G., Frangione, B., Rostagno, A., and Ghiso, J. (2009). Genetics and molecular pathogenesis of sporadic and hereditary cerebral amyloid angiopathies. Acta Neuropathol. 118, 115–130.

Calhoun, M.E., Burgermeister, P., Phinney, A.L., Stalder, M., Tolnay, M., Wiederhold, K.H., Abramowski, D., Sturchler-Pierrat, C., Sommer, B., Staufenbiel, M., and Jucker, M. (1999). Neuronal overexpression of mutant amyloid precursor protein results in prominent deposition of cerebrovascular amyloid. Proc. Natl. Acad. Sci. USA 96, 14088–14093.

Coomaraswamy, J., Kilger, E., Wo¨ lfing, H., Scha¨ fer, C., Kaeser, S.A., Wegenast-Braun, B.M., Hefendehl, J.K., Wolburg, H., Mazzella, M., Ghiso, J., et al. (2010). Modeling familial Danish dementia in mice supports the concept of the amyloid hypothesis of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 107, 7969–7974.

Dierksen, G.A., Skehan, M.E., Khan, M.A., Jeng, J., Nandigam, R.N., Becker, J.A., Kumar, A., Neal, K.L., Betensky, R.A., Frosch, M.P., et al. (2010). Spatial relation between micro-bleeds and amyloid deposits in amyloid angiopathy. Ann. Neurol. 68, 545–548.

Maeda, A., Yamada, M., Itoh, Y., Otomo, E., Hayakawa, M., and Miyatake, T. (1993). Computer-assisted three-dimensional image analysis of cerebral amyloid angiopathy. Stroke 24, 1857–1864.

Winkler, D.T., Bondolfi, L., Herzig, M.C., Jann, L., Calhoun, M.E., Wiederhold, K.H., Tolnay, M., Staufenbiel, M., and Jucker, M. (2001). Spontaneous hemorrhagic stroke in a mouse model of cerebral amyloid angiopathy. J. Neurosci. 21, 1619–1627.

Haass, C., and Selkoe, D.J. (2007). Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat. Rev. Mol. Cell Biol. 8, 101–112.

Lesné, S., Koh, M.T., Kotilinek, L., Kayed, R., Glabe, C.G., Yang, A., Gallagher, M., and Ashe, K.H. (2006). A specific amyloid-beta protein assembly in the brain impairs memory. Nature 440, 352–357.

Shankar, G.M., Li, S., Mehta, T.H., Garcia-Munoz, A., Shepardson, N.E., Smith, I., Brett, F.M., Farrell, M.A., Rowan, M.J., Lemere, C.A., et al. (2008). Amyloid-beta protein dimers isolated directly from

Alzheimer’s brains impair synaptic plasticity and memory. Nat. Med. 14, 837–842.

Lambert, M.P., Barlow, A.K., Chromy, B.A., Edwards, C., Freed, R., Liosatos, M., Morgan, T.E., Rozovsky, I., Trommer, B., Viola, K.L., et al. (1998). Diffusible, non-fibrillar ligands derived from Abeta1-

are potent central nervous system neurotoxins. Proc. Natl. Acad. Sci. USA 95, 6448–6453.

Ono, K., Condron, M.M., and Teplow, D.B. (2009). Structure-neurotoxicity relationships of amyloid beta-protein oligomers. Proc. Natl. Acad. Sci. USA 106, 14745–14750.

Meyer-Luehmann, M., Coomaraswamy, J., Bolmont, T., Kaeser, S., Schaefer, C., Kilger, E., Neuenschwander, A., Abramowski, D., Frey, P., Jaton, A.L., et al. (2006). Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host. Science 313, 1781–1784.

Paravastu, A.K., Qahwash, I., Leapman, R.D., Meredith, S.C., and Tycko, R. (2009). Seeded growth of beta-amyloid fibrils from Alzheimer’s brain-derived fibrils produces a distinct fibril structure. Proc. Natl. Acad. Sci. USA 106, 7443–7448.

Spires-Jones, T.L., Kopeikina, K.J., Koffie, R.M., de Calignon, A., and Hyman, B.T. (2011). Are tangles as toxic as they look? J. Mol. Neurosci. 45, 438–444.

Winner, B., Jappelli, R., Maji, S.K., Desplats, P.A., Boyer, L., Aigner, S., Hetzer, C., Loher, T., Vilar, M., Campioni, S., et al. (2011). In vivo demonstration that alpha-synuclein oligomers are toxic. Proc. Natl. Acad. Sci. USA 108, 4194–4199.

Glabe, C.G. (2008). Structural classification of toxic amyloid oligomers. J. Biol. Chem. 283, 29639– 29643.

Campioni, S., Mannini, B., Zampagni, M., Pensalfini, A., Parrini, C., Evangelisti, E., Relini, A., Stefani, M., Dobson, C.M., Cecchi, C., and Chiti, F. (2010). A causative link between the structure of aberrant protein oligomers and their toxicity. Nat. Chem. Biol. 6, 140–147.

Keshet, B., Yang, I.H., and Good, T.A. (2010). Can size alone explain some of the differences in toxicity between beta-amyloid oligomers and fibrils? Biotechnol. Bioeng. 106, 333–337.

Roychaudhuri, R., Yang, M., Hoshi, M.M., and Teplow, D.B. (2009). Amyloid beta-protein assembly and Alzheimer disease. J. Biol. Chem. 284, 4749–4753.

Yankner, B.A., and Lu, T. (2009). Amyloid beta-protein toxicity and the pathogenesis of Alzheimer disease. J. Biol. Chem. 284, 4755–4759.

Shankar, G.M., and Walsh, D.M. (2009). Alzheimer’s disease: synaptic dysfunction and Abeta. Mol. Neurodegener. 4, 48.

Cissé, M., Halabisky, B., Harris, J., Devidze, N., Dubal, D.B., Sun, B., Orr, A., Lotz, G., Kim, D.H., Hamto, P., et al. (2011). Reversing EphB2 depletion rescues cognitive functions in Alzheimer model. Nature 469, 47–52.

Lacor, P.N., Buniel, M.C., Furlow, P.W., Clemente, A.S., Velasco, P.T., Wood, M., Viola, K.L., and Klein, W.L. (2007). Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J. Neurosci. 27, 796–807.

Laure´n, J., Gimbel, D.A., Nygaard, H.B., Gilbert, J.W., and Strittmatter, S.M. (2009). Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature 457, 1128–1132.

Snyder, E.M., Nong, Y., Almeida, C.G., Paul, S., Moran, T., Choi, E.Y., Nairn, A.C., Salter, M.W., Lombroso, P.J., Gouras, G.K., and Greengard, P. (2005). Regulation of NMDA receptor trafficking by amyloid-beta. Nat. Neurosci. 8, 1051–1058.

Wei, W., Nguyen, L.N., Kessels, H.W., Hagiwara, H., Sisodia, S., and Malinow, R. (2010). Amyloid beta from axons and dendrites reduces local spine number and plasticity. Nat. Neurosci. 13, 190–196.

Glabe, C.G., and Kayed, R. (2006). Common structure and toxic function of amyloid oligomers implies a common mechanism of pathogenesis. Neurology 66 (2, Suppl 1), S74–S78.

Hebda, J.A., and Miranker, A.D. (2009). The interplay of catalysis and toxicity by amyloid intermediates on lipid bilayers: insights from type II diabetes. Annu Rev Biophys 38, 125–152.

Stefani, M. (2010). Biochemical and biophysical features of both oligomer/fibril and cell membrane in amyloid cytotoxicity. FEBS J. 277, 4602–4613.

Hedden, T., Van Dijk, K.R., Becker, J.A., Mehta, A., Sperling, R.A., Johnson, K.A., and Buckner, R.L. (2009). Disruption of functional connectivity in clinically normal older adults harboring amyloid burden. J. Neurosci. 29, 12686–12694.

Tsai, J., Grutzendler, J., Duff, K., and Gan, W.B. (2004). Fibrillar amyloid deposition leads to local synaptic abnormalities and breakage of neuronal branches. Nat. Neurosci. 7, 1181–1183.

Jan, A., Adolfsson, O., Allaman, I., Buccarello, A.L., Magistretti, P.J., Pfeifer, A., Muhs, A., and Lashuel, H.A. (2011). Abeta42 neurotoxicity is mediated by ongoing nucleated polymerization process rather than by discrete Abeta42 species. J. Biol. Chem. 286, 8585–8596.

Martins, I.C., Kuperstein, I., Wilkinson, H., Maes, E., Vanbrabant, M., Jonckheere, W., Van Gelder, P., Hartmann, D., D’Hooge, R., De Strooper, B., et al. (2008). Lipids revert inert Abeta amyloid fibrils to neurotoxic protofibrils that affect learning in mice. EMBO J. 27, 224–233.

Selkoe, D.J. (2011). Resolving controversies on the path to Alzheimer’s therapeutics. Nat. Med. 17,

–1065.

Wogulis, M., Wright, S., Cunningham, D., Chilcote, T., Powell, K., and Rydel, R.E. (2005). Nucleation-dependent polymerization is an essential component of amyloid-mediated neuronal cell death. J. Neurosci. 25, 1071–1080.

Teplow, D. B. (1998) Amyloid 5, 121–142

Caughey, B., and Lansbury, P. T. (2003) Annu. Rev. Neurosci. 26, 267–298

Bitan, G., and Teplow, D. B. (2004) Acc. Chem. Res. 37, 357–364

Urbanc, B., Cruz, L., Yun, S., Buldyrev, S. V., Bitan, G., Teplow, D. B., and Stanley, H. E. (2004) Proc. Natl. Acad. Sci. U. S. A. 101, 17345–17350

Chen, Y.-R., and Glabe, C. G. (2006) J. Biol. Chem. 281, 24414–24422

Teplow, D. B., Lazo, N. D., Bitan, G., Bernstein, S., Wyttenbach, T., Bowers, M. T., Baumketner, A., Shea, J.-E., Urbanc, B., Cruz, L., Borreguero, J., and Stanley, H. E. (2006) Acc. Chem. Res. 39, 635–645

Grant, M. A., Lazo, N. D., Lomakin, A., Condron, M. M., Arai, H., Yamin, G., Rigby, A. C., and Teplow, D. B. (2007) Proc. Natl. Acad. Sci. U. S. A. 104, 16522–16527

Sipe, J. C. (ed) (2005) Amyloid Proteins: The Beta Sheet Conformation and Disease, Wiley-VCH, Weinheim, Germany

Hardy, J. (1996) Ann. Med. 28, 255–258

Kirkitadze, M. D., Bitan, G., and Teplow, D. B. (2002) J. Neurosci. Res. 69, 567–577

Hardy, J., and Selkoe, D. J. (2002) Science 297, 353–356

Walsh, D. M., Hartley, D. M., Kusumoto, Y., Fezoui, Y., Condron, M. M., Lomakin, A., Benedek, G. B., Selkoe, D. J., and Teplow, D. B. (1999) J. Biol. Chem. 274, 25945–25952

Lundmark K, Westermark GT, Nystrom S, Murphy CL, Solomon A, Westermark P. 2002. Proc. Natl. Acad. Sci. USA 99:6979–84

Lundmark K,Westermark GT, Olsen A,Westermark P. 2005. Proc.Natl.Acad.Sci. USA 102:6098–102

Legname G, Baskakov IV, Nguyen HO, Riesner D, Cohen FE, et al. 2004. Science 305:673–76

Hirschfield GM, Hawkins PN. 2003. Int. J. Biochem. Cell. Biol. 35:1608–13

Alexandrescu AT. 2005. Protein Sci. 14:1–12

Serpell LC, Sunde M, Benson MD, Tennent GA, Pepys MB,Fraser PE.2000.J.Mol.Biol.300:1033–39

Bauer HH, Aebi U, Haner M, Hermann R, Muller M, Merkle HP. 1995. J. Struct. Biol. 115:1–15

Saiki M, Honda S, Kawasaki K, Zhou D, Kaito A, et al. 2005. J. Mol. Biol. 348:983–98

Pedersen JS, Dikov D, Flink JL, Hjuler HA, Christiansen G, Otzen D. 2005. J. Mol. Biol. 355:501–23

Nilsson, K.P., Joshi-Barr, S., Winson, O., and Sigurdson, C.J. (2010). Prion strain interactions are highly selective. J. Neurosci. 30, 12094–12102.

Khurana R, Uversky VN, Nielsen L, Fink AL. 2001. J. Biol. Chem. 276:22715–21

Bousset L, Redeker V, Decottignies P, Dubois S, Le Marechal P, Melki R. 2004. Biochemistry43:5022–32

Jin LW, Claborn KA, Kurimoto M, Geday MA, Maezawa I, et al. 2003. Proc. Natl. Acad. Sci. USA 100:15294–98

Krebs MRH, MacPhee CE, Miller AF, Dunlop LE, Dobson CM, Donald AM. 2004. Proc. Natl. Acad. Sci. USA 101:14420–24

Johnson, S.M., Connelly, S., Fearns, C., Powers, E.T., and Kelly, J.W. (2012). The transthyretin amyloidoses: from delineating the molecular mechanism of aggregation linked to pathology to a regulatory-agency-approved drug. J Mol Biol. Published online January 5, 2012. 10.1016/j.jmb.2011.12.060.

Klabunde, T., Petrassi, H.M., Oza, V.B., Raman, P., Kelly, J.W., and Sacchettini, J.C. (2000). Rational design of potent human transthyretin amyloid disease inhibitors. Nat. Struct. Biol. 7, 312–321.

Necula, M., Kayed, R., Milton, S., and Glabe, C.G. (2007). Small molecule inhibitors of aggregation indicate that amyloid beta oligomerization and fibrillization pathways are independent and distinct. J. Biol. Chem. 282, 10311– 10324.

Chen, J., Armstrong, A.H., Koehler, A.N., and Hecht, M.H. (2010). Small molecule microarrays enable the discovery of compounds that bind the Alzheimer’s Ab peptide and reduce its cytotoxicity. J. Am. Chem. Soc. 132, 17015–17022.

Pickhardt, M., von Bergen, M., Gazova, Z., Hascher, A., Biernat, J., Mandelkow, E.M., and Mandelkow, E. (2005). Screening for inhibitors of tau polymerization. Curr. Alzheimer Res. 2, 219–226.

Sciarretta, K.L., Gordon, D.J., and Meredith, S.C. (2006). Peptide-based inhibitors of amyloid assembly. Methods Enzymol. 413, 273–312.

Tjernberg, L.O., Na¨ slund, J., Lindqvist, F., Johansson, J., Karlstro¨ m, A.R., Thyberg, J., Terenius, L., and Nordstedt, C. (1996). Arrest of beta-amyloid fibril formation by a pentapeptide ligand. J. Biol. Chem. 271, 8545–8548.

Liao, M.C., Hoos, M.D., Aucoin, D., Ahmed, M., Davis, J., Smith, S.O., and Van Nostrand, W.E. (2010). N-terminal domain of myelin basic protein inhibits amyloid beta-protein fibril assembly. J. Biol. Chem. 285, 35590–35598.

Pepys, M.B. (2001). Pathogenesis, diagnosis and treatment of systemic amyloidosis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 356, 203–210, discussion 210–211.

Singleton, A., Myers, A., and Hardy, J. (2004). The law of mass action applied to neurodegenerative disease: a hypothesis concerning the etiology and pathogenesis of complex diseases. Hum. Mol. Genet. 13(Spec No 1), R123–R126.

Schilling, S., Zeitschel, U., Hoffmann, T., Heiser, U., Francke, M., Kehlen, A., Holzer, M., Hutter-Paier, B., Prokesch, M., Windisch, M., et al. (2008). Glutaminyl cyclase inhibition attenuates pyroglutamate Abeta and Alzheimer’s disease-like pathology. Nat. Med. 14, 1106–1111.

Brody, D.L., and Holtzman, D.M. (2008). Active and passive immunotherapy for neurodegenerative disorders. Annu. Rev. Neurosci. 31, 175–193.

Jucker, M. (2010). The benefits and limitations of animal models for translational research in neurodegenerative diseases. Nat. Med. 16, 1210–1214.

Golde, T.E., Schneider, L.S., and Koo, E.H. (2011). Anti-ab therapeutics in Alzheimer’s disease: the need for a paradigm shift. Neuron 69, 203–213.

Aguzzi, A., and O’Connor, T. (2010). Protein aggregation diseases: pathogenicity and therapeutic perspectives. Nat. Rev. Drug Discov. 9, 237–248.

Chai, X., Wu, S., Murray, T.K., Kinley, R., Cella, C.V., Sims, H., Buckner, N., Hanmer, J., Davies, P., O’Neill, M.J., et al. (2011). Passive immunization with anti-Tau antibodies in two transgenic models: reduction of Tau pathology and delay of disease progression. J. Biol. Chem. 286, 34457–34467.

Masliah, E., Rockenstein, E., Mante, M., Crews, L., Spencer, B., Adame, A., Patrick, C., Trejo, M., Ubhi, K., Rohn, T.T., et al. (2011). Passive immunization reduces behavioral and neuropathological deficits in an alpha-synuclein transgenic model of Lewy body disease. PLoS ONE 6, e19338.

Bodin, K., Ellmerich, S., Kahan, M.C., Tennent, G.A., Loesch, A., Gilbertson, J.A., Hutchinson, W.L., Mangione, P.P., Gallimore, J.R., Millar, D.J., et al. (2010). Antibodies to human serum amyloid P component eliminate visceral amyloid deposits. Nature 468, 93–97.




DOI: http://dx.doi.org/10.18103/imr.v6i1.849

Refbacks

  • There are currently no refbacks.
Copyright 2016. All rights reserved.