Blood-Based Markers in Autism Spectrum Disorders: Part 2. Clinical Lab Biomarkers

Aristo Vojdani, Jama Lambert, Elroy Vojdani, MD


In this article, we aim to illustrate the various possible mechanisms that play a role in the multi-faceted neuroinflammation seen in Autism Spectrum Disorders, which involve the gastrointestinal, immune and nervous systems. As with other environmentally-induced autoimmune disorders, autism is a combination of genetic susceptibility, environmental triggers and barrier dysfunction.  The pathogenesis of autism can take many avenues, from gut dysbiosis, to loss of intestinal barrier integrity, to systemic inflammation, to breach of the blood-brain barrier, to neuroinflammation and neuroautoimmunity. The gut-brain axis has been shown to play an important role in the induction of neuroautoimmune disorders. The connective inter-relation between gut and brain means that dysfunctions or damage to the intestinal barrier or blood-brain barrier can seriously affect one or the other. Environmental triggers actually begin their assault while someone is still in the womb; studies have shown that the efficiency of a person’s immune system or his susceptibility to autoimmune disease can be affected by prenatal conditions, maternal exposures, and continuing exposure throughout a person’s lifetime. Toxic chemicals abound in all aspects of existence, from food to medication to packaging to pollution. Individuals may be immune-reactive to particular chemicals bound to human tissue or food proteins. Infections can affect the immune system and breach the immune barriers. The triggering factors may also bind to human tissue, including neural tissue, causing tissue reactivity and neuroautoimmunity. By understanding the mechanisms by which these environmental triggers lead to neuroautoimmunity, clinicians may be able to identify the triggers, remove them from a patient’s environment, and devise protocols to repair the barriers and improve the patient’s health.



Autism Spectrum Disorder, Body burden, Neuroatuoimmunity, Food color, Blood-brain barrier, Synapsin, Cerebellar

Full Text:



Kiberstis P, Roberts L. It’s not just the genes. Science, 2002; 296(11):685-686.

Ng M, de Montigny JG, Offner M, Do MT. Environmental factors associated with autism spectrum disorder: a scoping review for the years 2003-2013. Health Promot Chronic Dis Prev Can, 2017; 37(1):1-23.

Modabbernia A, Velthorst E, Reichenberg A. Environmental risk factors for autism: an evidence-based review of systematic reviews and meta-analyses. Molecular Autism, Mar 2017; 8:13.

Vojdani A. Identification of etiology of autism. U.S. Patent 7,252,957 B2, filed February 3, 2004, and issued August 7, 2007.

Vojdani A, Campbell AW, Anyanwu E, et al. Antibodies to neuron-specific antigens in children with autism: possible cross-reaction with encephalitogenic proteins from milk, Chlamydia pneumoniae and Streptococcus group A. J Neuroimmunol, 2002; 129(1-2):168-177.

Vojdani A, Pangborn JB, Vojdani E, Cooper EL. Infections, toxic chemicals and dietary peptides binding to lymphocyte receptors arid tissue enzymes are responsible for autoimmunity in autism. Int J Immunopath Pharmacol, 2003; 16(3):189-199.

Edelson SB, Cantor DS. The neurotoxic etiology of the autistic spectrum disorder: a replicative study. Toxic Ind Health, 2002; 16(6):239-247.

Fatemi SH, Earle J, Kamodia R, et al. Prenatal viral infection leads to pyramidal cell atrophy and macrocephaly in adulthood: implications for genesis of autism and schizophrenia. Cell Mol Neurobiol, 2002; 22(1):25-33.

Shi L, Fatemi SH, Sidwell RW, Patterson PH. Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. J Neurosciences, 2003; 23(1):297.

Myers GJ, Davison PW. Prenatal methylmercury exposure and children: neurologic, developmental, and behavioral research. Envi Health Perspecitives,1998; 3(106 Suppl):841-847.

Vinet É, Pineau CA, Clarke AE, et al. Neurodevelopmental disorders in children born to mothers with systemic lupus erythematosus. Lupus, 2014; 23(11):1099-1104.

Ross G, Sammaritano L, Nass R, Lockshin M. Effects of mothers’ autoimmune disease during pregnancy on learning disabilities and hand preference in their children. Arch Pediatr Adolesc Med, 2003; 157(4):397-402.

Urowitz MD, Gladman DD, MacKinnon A, et al. Neurocognitive abnormalities in offspring of mothers with systemic lupus erythematosus. Lupus, 2008; 17(6):555-560.

PrabhuDas M, Bonney E, Caron K, et al. Immune mechanisms at the maternal-internal interface: perspectives and challenges. Nat Immunol, 2015; 16(4):328-334.

Manikham M, Tracey R, Guerrero-Bosagna C, Skinner MK. Plastics derived endocrine disruptors (BPA, DEHP and DBP) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations. PLoS One, 2013; 8(1):e55387. dio:10.1371/journal.pone.0055387.

Vecchio L, Cisterna B, Malatesta M, et al. Ultrastructural analysis of testes from mice fed on genetically modified soybean. Eur J Histochem, 2004; 48(4):449-454.

Ivarsson SA, Bjerre L, Vegfors P, Ahifors K. Autism as one of several disabilities in two children with congenital cytomegalovirus infection. Neuropediatrics, 1990; 21(2):102-103.

Zimmer C. Microbiology. Do chronic diseases have an infectious root? Science, 2001; 293(5537):1974-1977.

Neu J, Rushing J. Cesarean versus vaginal delivery: long term infant outcomes and the hygiene hypothesis. Clin Perinatol, 2011; 38(2):321-331.

Curran EA, Dalman C, Kearney PM, et al. Association between obstetric mode of delivery and autism spectrum disorder: a population-based sibling design study. JAMA Psychiatry, 2015; 72(9):935-942.

Stuebe A. The risks of not breastfeeding for mothers and infants. Rev Obstet Gynecol, 2009; 2(4):222-231.

Schultz ST, Klonoff-Cohen HS, Wingard DL, et al. Breastfeeding, infant formula supplementation, and autistic disorder: the results of a parent survey. International Breastfeeding J, Sep 2006, 1:16 doi:10.1186/1746-4358-1-16.

Shafai T, Mustafa M, Hild T, et al. The association of early weaning and formula feeding with autism spectrum disorders. Breastfeeding Med, 2014; 9(5):275-276.

Rimland B. The autism epidemic, vaccinations and mercury. J Nutritional Environmental Med, 2000; 10:261-266.

Schultz ST, Klonoff-Cohen HS, Wingard DL, et al. Acetaminophen (paracetamol) use, measles-mumps-rubella vaccination, and autistic disorder: the results of a parent survey. Autism, 2008; 12(3):293-307. doi:10.1177/1362361307089518.

Hooker BS. Measles-mumps-rubella vaccination timing and autism among young African American boys: a reanalysis of CDC data. Translational Neurodegeneration, Aug 2014; 3:16.

Sansotta N, Piacentini GL, Mazzei F, et al. Timing of introduction of solid food and risk of allergic disease development: understanding the evidence. Allergol Immunopathol (Madr), 2013; 41(5):337-345. doi:10.1016/j.allerr.2012.08.012.

Emond A, Emmett P, Steer C, Golding J. Feeding symptoms, dietary patterns, and growth in young children with autism spectrum disorders. Pediatrics, 2010; 126(2):e337-e342.

Dowling DJ, Levy O. Ontogeny of early life immunity. Trends Immunol, 2014; 35(7):299-310.

Levy O. Innate immunity of the newborn: basic mechanisms and clinical correlates. Nat Rev Immunol, 2007; 7(5):379-390.

Christian LM, Galley JD, Hade EM, et al. Gut microbiome composition is associated with temperament during early childhood. Brain Behavior Immunity, Mar 2015; 45:118-127.

Rodriguez JM, Murphy K, Stanton C, et al. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis, Feb 2015; 26:26050. doi:10.3402/mehd.v26.26050.

Korotkova M, Telemo E, Yamashiro Y, et al. The ratio of n-6 to n-3 fatty acids in maternal diet influences the induction of neonatal immunological tolerance to albumin. Clin Exp Immunol, 2004; 137(2):237-244.

Ohshima Y, Yamada A, Tokuriki S, et al. Transmaternal exposure to bisphenol A modulates the development of oral tolerance. Pediatr Res, 2007; 62(1):60-64.

Verhassaelt V. Oral tolerance in neonates: from basics to potential prevention of allergic disease. Mucosal Immunol, 2010; 3(4):326-333. doi: 10.1038/mi.2010.25.

Blaser MJ. The theory of disappearing microbiota and the epidemics of chronic diseases. Nat Rev Immunol, 2017; 17(8):461-463.

Zablotsky B, Black LI, Maenner MJ, et al. Estimated prevalence of autism and other developmental disabilities following questionnaire changes in the 2014 National Health Interview Survey. Natl Health Stat Report. Nov 2015; 87:1-20.

Rossignol DA, Frye RE. A review of research trends in physiological abnormalities in autism spectrum disorders: immune dysregulation, inflammation, oxidative stress, mitochondrial dysfunction and environmental toxicant exposures. Mol Psychiatry, 2011; 17(4):389-401. doi: 10.1038/mp.2011.165.

Lerner A, Matthias T. Changes in intestinal tight junction permeability associated with industrial food additives explain the rising incidence of autoimmune disease. Autoimmun Rev, 2015; 14(6):479-489. doi: 10.1016/j.autrev.2015.01.009.

Menard S, Guzylack-Piriou L, Leveque M, et al. Food intolerance at adulthood after perinatal exposure to the endocrine disruptor bisphenol A. FASEB J, 2014; 28(11):4893-900. doi: 10.1096/fj.14-255380.

Macpherson AJ, Gomez de Aguero M, Canal-Vonarburg SC. How nutrition and the maternal microbiota shape the neonatal immune system. Nat Rev Immunol, 2017; 17(8):508-517.

Reynolds LA, Finlay BB. Early life factors that affect allergy development. Nat Rev Immunol, 2017; 17(8):518-528.

Offit PA, Quarles J, Gerber MA, et al. Addressing parents’ concerns: do multiple vaccines overwhelm or weaken the infant’s immune system? Pediatrics. 2002; 109(1):124-129.

Kubzansky LD. Sick at heart: the pathophysiology of negative emotions. Cleveland Clin J Med, 2007; 74(s1):s67-72.

Söderholm JD, Perdue MH. Stress and the gastrointestinal tract II. Stress and intestinal barrier function. Am J Physiol Gastrointest Liver Physiol, 2001; 280(1):G7–G13.

Wilson LM, Baldwin AL. Environmental stress causes mast cell degranulation, endothelial and epithelial changes, and edema in the rat intestinal mucosa. Microcirculation, 1999; 6(3):189-198.

Lambert GP. Stress-induced gastrointestinal barrier dysfunction and its inflammatory effects. J Anim Sci, 2009; 87(14 Suppl):E101-E108. doi: 10.2527/jas.2008-1339.

Vojdani A. Oral Tolerance and its relationship to food immunoreactivities. Altern Ther Health Med, 2015; 21(Suppl 1):23-32.

Gardner MLC. (2002) Exorphins and other biologically active peptides derived from diet. In: J Brostoff and SJ Challacombe. Food Allergy and Intolerance, 2nd Edition. New York: Saunders, 2002:465-478.

Vojdani A, O’Bryan T, Green JA, et al. Immune response to dietary proteins, gliadin and cerebellar peptides in children with autism. Nutri Neurosci, 2004; 7(3):151-161.

Scifo R, Cioni M, Nicolosi A, et al. Opioid-immune interactions in autism: behavioral and immunological assessment during a double-blind treatment with naltrexone. Annali dell Instituto Superiore di Sanita, 1996; 32(3):351-359.

Sher L. Autistic disorder and the endogenous opioid system. Medical Hypotheses, 1997; 48(5):413-414.

Mercer ME, Holder MD. Food cravings, endogenous opioid peptides and food intake: a review. Appetite, 1997; 29(3):325-352.

Alaedini A, Okamoto H, Briani C, et al. Immune cross-reactivity in celiac disease: anti-gliadin antibodies bind to neuronal synapsin I. J Immunol, 2007; 178(10):6590-6595.

General Accounting Office. Toxic Substances Control Act: Preliminary Observations on Legislative Changes to Make TSCA More Effective (Testimony, 07/13/94, GAO/T-RCED-94-263) 1994.

Hou L, Zhang X, Wang D, Baccarelli A. Environmental chemical exposures and human epigenetics. Int J Epidemiol, 2012; 41(1):79-105. doi:10.1093/ije/dyr154.

Gennings C, Ellis R, Ritter J. Linking empirical estimates of body burden of environmental chemicals and wellness using NHANES data. Environ Int, 2012; 39(1):56-65. doi:10.1016/j.envint.2011.09.002.

Trasande L, Zoeller RT, Hass U, et al. Estimating burden and disease costs of exposure to endocrine-disrupting chemicals in the European Union. J Clin Endocrinol Metab, 2014; 100(4):1245-1255. doi:10.1210/jc.2014-4324.

Koch HM, Calafat AM. Human body burdens of chemicals used in plastic manufacture. Philos Trans R Soc Lond B Biol Sci, 2009; 364(1526):2063-2078. doi:10.1098/rstb.2008.0208.

Pollard KM, Hultman P, Kono DW. Toxicology of autoimmune diseases. Chem Res Toxicol, 2010; 23(3):455-466.

Vojdani A, Kharrazian D, Mukherjee PS. Elevated levels of antibodies against xenobiotics in a subgroup of healthy subjects. J Applied Toxicol, 2015; 35(4):383-397.

Houlihan J, Kropp T, Wiles R, et al. Body Burden: the pollution in newborns, a benchmark investigation of industrial chemicals, pollutants, and pesticides in human umbilical cord blood. Environmental Working Group. 2005.

Sharpe MA, Livingston AD, Baskin DS. Thimerosal-derived ethylmercury is a mitochondrial toxin in human astrocytes: possible role of fenton chemistry in the oxidation and breakage of mtDNA. J Toxicol, 2012; 2012:373678. doi:10.1155/2012/373678.

Vas J, Monestier M. Immunology of mercury. Ann N Y Acad Sci, Nov 2008; 1143:240-267.

Countera SA, Buchanan LH. Mercury exposure in children: a review. Toxicol Appl Pharmacol, 2004; 198(2):209-230.

American Academy of Pediatrics. Committee on Infectious Diseases and Committee on Environmental Health, Thimerosal in vaccines: an interim report to clinicians. Pediatrics, 1999; 104(3):570-574.

Geier MR, Geier DA. Neurodevelopmental disorders after thimerosal-containing vaccines: a brief communication. Exp Biol Med, 2003; 228(6):660-664.

Bernard S, Enayati A, Redwood L, et al. Autism: a novel form of mercury poisoning. Med Hypotheses, 2001; 56(4):462-471.

Levine SP, Cavender GD, Langolf GD, Albers JW. Elemental mercury exposure: peripheral neurotoxicity. Br J Ind Med, 1982; 39(2):136-139. doi:10.1136/oem.39.2.136.

Ng S, Lin CC, Jeng SF, et al. Mercury, APOE, and child behavior. Chemosphere, Feb 2015; 120:123-130. doi: 10.1016/j.chemosphere.2014.06.003.

Davidson PW, Myers GJ, Weiss B. Mercury exposure and child development outcomes. Pediatrics, 2004; 113(4 Suppl):1023-1029.

Zahir F, Rizwi SJ, Hag SK, Khan RH. Low dose mercury toxicity and human health. Environ Toxicol Pharmacol, 2005; 20(2):351-360. doi: 10.1016/j.etap.2005.03.007.

Grandjean P, Landrigan PJ. Neurobehavioural effects of developmental toxicity. Lancet Neurol, 2014; 13(3):330-338.

Lubick N. Immunity: mercury alters immune system response in artisanal gold miners. Environ Health Perspect, 2010; 118(6):A243. doi:10.1289/ehp.118-a243.

Garrecht M, Austin DW. The plausibility of a role for mercury in the etiology of autism a cellular perspective. Toxicol Environ Chem, 2011; 93(5-6):1251-1272. doi:10.1080/02772248.2011.580588.

Rossignol DA, Frye RE. Mitochondrial dysfunction in autism spectrum disorders: a systemic review and meta-analysis. Molecular Psychiatry, 2011; 17(3):290-314. doi:10.1038/mp.2010.136.

Ball LK, Ball R, Pratt RD. An assessment of thimerosal use in childhood vaccines. Pediatrics, 2001; 107(5):1147-1154.

National Advisory Committee on Immunization. Thimerosal: updated statement. An Advisory Committee Statement. Can Commun Dis Rep, 2007; 33(ACS-6):1-13.

Rice KM, Walker, Jr EM, Wu M, et al. Environmental mercury and its toxic effects. J Prev Med Public Health, 2014; 47(2):74-83.

Kern JK, Geier DA, Sykes LK, et al. The relationship between mercury and autism: A comprehensive review and discussion. J Trace Elements Med Biol, Sep 2016; 37:8-24.

Geier DA, King PG, Sykes LK, et al. A comprehensive review of mercury provoked autism. Indian J Med Res, 2008; 128(4):383-411.

Offit PA, Jew RK. Addressing parents’ concerns: do vaccines contain harmful preservatives, adjuvants, additives, or residuals? Pediatrics, 2003; 112(6 Pt 1):1394-1397.

Tomljenovic L, Shaw CA, Pineton de Chambrun G, et al. Aluminum enhances inflammation and decreases mucosal healing in experimental colitis in mice. Mucos Immunol, 2014; 7(3):589-600. (accessed 3/13/2016)

Yokel RA, McNamara PJ. Aluminium toxicokinetics: an updated minireview. Pharmacol Toxicol, 2001; 88(4):159-167.

Walton JR. A longitudinal study of rats chronically exposed to aluminum at human dietary levels. Neurosci Lett, 2007; 412(1):29-33.

Walton JR. Functional impairment in aged rats chronically exposed to human range dietary aluminum equivalents. Neurotoxicol, 2009; 30(2):182-193.

Wills MR, Savory J. Water content of aluminum, dialysis dementia, and osteomalacia. Environ Health Perspect, Nov 1985; 63:141-147.

Flendrig JA, Kruis H, Das HA. Aluminium intoxication: the cause of dialysis dementia? Proc Eur Dial Transplant Assoc, 1976; 13:355-368.

Altmann P. Aluminum induced disease in subjects with and without renal failure: does it help us understand the role of aluminum in Alzheimer’s disease. In: C Exley (ed). Aluminum and Alzheimer’s disease: the science that describes the link. Amsterdam: Elsevier Science, 2001:1-37.

D’Haese PC, Couttenye MM, De Broe ME. Diagnosis and treatment of aluminium bone disease. Nephrol Dial Transplant, 1996; 11(Suppl 3):74-79.

Alfrey AC. Dialysis encephalopathy syndrome. Annu Rev Med, 1978; 29:93-98.

Alfrey AC. Dialysis encephalopathy. Kidney Int, 198(Suppl); 18:S53-S57.

Alfrey AC, LeGendre GR, Kaehny WD. The dialysis encephalopathy syndrome. Possible aluminum intoxication. N Engl J Med, 1976; 294(4):184-188.

Rozas VV, Port FK, Easterling RE. An outbreak of dialysis dementia due to aluminum in the dialysate. J Dial, 1978; 2(5-6):459-470.

Perl DP, Moalem S. Aluminum and Alzheimer’s disease, a personal perspective after 25 years. J Alzheimers Dis, 2006; 9(Suppl):291-300.

Gherardi RK, Eidi H, Crépeaux G, et al. Biopersistence and brain translocation of aluminum adjuvant vaccine. Front Neurol, Feb 2015; 6:4.

Perricone C, Agmon-Levin N, Shoenfeld Y. Novel pebbles in the mosaic of autoimmunity. BMC Med, Apr 2013; 11:101. doi: 10.1186/1741-7015-11-101.

Vera-Lastra O, Medina G, Cruz-Dominguez Mdel P, et al. Autoimmune/inflammatory syndrome induced by adjuvants (Shoenfeld's syndrome): clinical and immunological spectrum. Expert Rev Clin Immunol, 2013; 9(4):361-373. doi: 10.1586/eci.13.2.

Gherardi RK, Coquet M, Cherin P, et al. Macrophagic myofasciitis lesions assess long-term persistence of vaccine-derived aluminium hydroxide in muscle. Brain, 2001; 124(Pt 9):1821-1831.

Pineton de Chambrun G, Body-Malapel M, Frey-Wagner I, et al. Aluminum enhances inflammation and decreases mucosal healing in experimental colitis in mice. Mucosal Immunol, 2014; 7(3):589-601. doi: 10.1038/mi.2013.78.

Walton JR. Aluminum in hippocampal neurons from humans with Alzheimer’s disease. Neurotoxicology, 2006; 27(3):385-394.

Walton JR, Tuniz C, Fink D, et al. Uptake of trace amounts of aluminum into the brain from drinking water. Neurotoxicology, 1995; 16(1):187-190.

Karlik SJ, Eichhorn GL. Polynucleotide cross-linking by aluminum. J Inorg Biochem, 1989; 37(4):259-269.

Fucci L, Oliver DN, Coon MJ, Stadtman ER. Inactivation of key metabolic enzymes by mixed-function oxidation reactions: possible implication in protein turnover and ageing. Proc Natl Acad Sci USA, 1983; 80(6):1521-1525.

Tomljenovic L, Shaw CA. Aluminum vaccine adjuvants: are they safe? Curr Med Chem, 2011; 18(17):2630-2637.

Perricone C, Colafrancesco S, Mazor RD, et al. Autoimmune/inflammatory syndrome induced by adjuvants (ASIA) 2013: unveiling the pathogenic, clinical and diagnostic aspects. J Autoimmun, Nov 2013; 47:1-16.

Israeli E, Agmon-Levin N, Blak M, Shoenfeld Y. Adjuvants and autoimmunity. Lupus, 2009; 18(13):1217-1225.

Exley C, Swarbrick L, Gherardi RK, Authier FJ. A role for the body burden of aluminium in vaccine-associated macrophagic myofascitis and chronic fatigue syndrome. Med Hypotheses, 2009; 72(2):135-139.

Gherardi RK. Lessons from macrophagic myofascitis: towards definition of a vaccine adjuvant-related syndrome. Rev Neurol (Paris), 2009; 159(2):162-164.

Stahl T, Taschan H, Brunn H. Aluminium content of selected foods and food products. Environmental Sciences Europe, Nov 2011; 23:37.

Saiyed SM, Yokel RA. Aluminium content of some foods and food products in the USA, with aluminium food additives. Food Addit Contam, 2005; 22(3):234-244.

Sato K, Suzuki I, Kubota H, et al. Estimation of daily aluminum intake in Japan based on food consumption inspection results: impact of food additives. Food Sci Nutr, 2014; 2(4):389-397. doi:10.1002/fsn3.114.

World Health Organization. Formaldehyde. Air quality guidelines (2nd ed). Regional Office for Europe, Copenhagen, Denmark, 2001:8.

Lyapina M, Kisselova-Yaneva A, Krasteva A, et al. Allergic contact dermatitis from formaldehyde exposure. J IMAB, 2012; 18(4):255-262.

van Birgelen AP, Chou BJ, Renne RA, et al. Effects of glutaraldehyde in a 2-year study in rats and mice. Toxicologic Sci, 2000; 55(1):195-205.

Pacenti M, Dugheri S, Boccalon P, et al. Evaluation of the occupational exposure to glutaraldehyde in some endoscopic services in an Italian hospital. Indoor Built Environ, 2006; 15(1):63-68.

Metz B, Kersten GFA, Hoogerhout P. Identification of formaldehyde-induced modifications in proteins. J Biol Chem, 2004; 279(8):6235-6243.

Wojdani A, Thrasher J, Cheung GB, Heuser G. Evidence for formaldehyde antibodies and altered cellular immunity in subjects exposed to formaldehyde in mobile homes. Arch Environ Health, 1987; 42(6):347-351.

Li H, Wang J, König R, et al. Formaldehyde-protein conjugate-specific antibodies in rats exposed to formaldehyde. J Toxicol Environ Health A, 2007; 70(13):1071-1075.

Nakamura K, Iwahashi K, Furukawa A, et al. Acetaldehyde adducts in the brain of alcoholics. Arch Toxicol, 2003; 77(10):591-593.

Migneault I, Dartiguenave C, Bertrand MJ, Waldron KC. Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques, 2004; 37(5):790-796, 798-802.

Vojdani A. A potential link between environmental triggers and autoimmunity. Autoimmune Dis,2014,2014:437231.

Rochester JR, Bolden AL. Bisphenol S and F: a systematic review and comparison of the hormonal activity of bisphenol A substitutes. Environ Health Perspect, 2015; 123(7):643-650.

Rochester JR. Bisphenol A and human health: a review of the literature. Reprod Toxiccol, 2013; 30(42C):132-155.

Welshons W, Nagel S, Vom Saal F. Large effects from small exposures. III. Endocrine mechanisms mediating effects of bisphenol A at levels of human exposure. Endocrinology, 2006; 147(Suppl 6):S59-S69.

Brotons JA, Olea-Serrano MF, Villalobos M, et al. Xenoestrogens released from lacquer coatings in food cans. Environ Health Perspect, 1995; 103:608-612.

Bittner GD, Denison MS, Yang CZ, et al. Chemicals having estrogenic activity can be released from some bisphenol a-free, hard and clear, thermoplastic resins. Environ Health, Dec 2014; 13:103.

Vandenberg L, Chahoud I, Heindel J, et al. Urinary, circulating, and tissue biomonitoring studies indicate widespread exposure to bisphenol A. Cien Saude Colet, 2012; 17(2):407-434.

Calfat A, Ye X, Wong L, et al. Exposure of the U.S. population to bisphenol A and 4-tertieary-octylphenol: 2003-2004. Environ Perspect, 2008; 116(1):39-44.

Careghini A, Mastorgio A, Saponaro S, Sezenna E. Bisphenol A, nonylphenols, benzophenones, and benzotriazoles in soils, groundwater, surface water, sediments, and food: a review. Environ Sci Pollut Res Int, 2013; 22(8):5711-5741. doi: 10.1007/s11356-014-3974-5.

Stein T, Schulter M, Steer R, et al. Bisphenol A exposure in children with autism spectrum disorders. Autism Res, 2015; 8(3):272-283.

Zimmerman J.B, Anastas PT. Chemistry. Toward substitution with no regrets. Science, 2015; 347(6227):1198-1199.

Wolstenholme JT, Rissman EF, Connelly JJ. The role of bisphenol A in shaping the brain, epigenome and behavior. Horm Behav, 2011; 59(3):296-305.

Braun JM, Yolton K, Dietrich KN, et al. Prenatal bisphenol A exposure and early childhood behavior. Environ Health Perspect, 2009; 117(2):1945-1952.

Braun JM, Kalkbrenner AE, Calafat AM, et al. Impact of early-life bisphenol A exposure on behavior and executive function in children. Pediatrics, 2011; 128(5):873-882.

Perera F, Vishnevetsky J, Herbstman JB, et al. Prenatal bisphenol a exposure and child behavior in an inner-city cohort. Environ Health Perspect, 2012; 120(8):1190-1194.

Inadera H. Neurological effects of bisphenol A and its analogues. Int J Med Sci, 2015; 12(12):926-936. doi:10.7150/ijms.13267.

Tsuda S, Murakami M, Matsusaka N, et al. DNA damage induced by red food dyes orally administered to pregnant and male mice. Toxicol Sci, 2001; 61(1):92-99.

Soltan SSA, Shehata MMEM. The effects of using color foods of children on immunity properties and liver, kidney on rats. Food Nutri Sci, 2012; 3(7):897-904.

Basak K, Duguc DK, Aylad F, et al. Maternally exposed food coloring additives on laryngeal histology in rats. J Environ Pathol Toxicol Oncol, 2014; 33(2):123-130.

Rulis AM, McLaughlin PJ, Salsbury PA, Pauli GH. Carcinogenic impurities in food and color additives – an analysis of presumptive risk levels. In: BJ Garrick, et al. (eds.) The analysis, communication, and perception of risk. New York: Springer Science + Business Media, 1991.

Saeed SMG, Abdullah SU, Sayeed SA, Ali R. Food protein: food colour interactions and its application in rapid protein assay. Czech J Food Sci, 2010; 28(6):506-513.

Katrahall U, Kalanur SS, Seetharamappa J. Interaction of bioactive comassie brilliant blue with protein: insight from spectroscopic methods. Sci Pharm, 2010; 78(4):869-880.

Mathavan VMK, Boh BK, Tayyad S. Characterization of erythrosine B Binding to bovine serum albumin and bilirubin displacement. Indian J Biochem Biophys, 2009; 46(4):325-331.

Li Y, Wei H, Liu R. A probe to study toxic interaction of tartrazine with bovine hemoglobin at the molecular level. Luminescence, 2014; 29(2):195-200.

Weliky N, Heiner DC. Hypersensitivity to chemicals, correlation of tartrazine hypersensitivity with characteristic serum IgD and IgE immune response patterns. Clin Allergy, 1980; 10(4):375-394.

Abdullah SU, Badaruddin M, Sayeed SA, et al. Binding ability of allura red with food proteins and its impact on protein digestibility. Food Chem, 2008; 110(3):605-610.

Badaruddin M, Abdullah SU, Sayeed AS, et al. Sunset yellow a food color for protein staining with SDS-PAGE. Cereal Food World, 2007; 52(1):12-14.

Saeed SMG, Sayeed SA, Ashraf S, et al. Investigations of in-vitro digestibility of proteins bound to food colors. J Pharm Nutr Sci, 2011; 1(1):34-40.

Vojdani A, Vojdani C. Immune reactivity to food coloring. Altern Ther Health Med, 2015; 21(Suppl 1):52-62.

Biederman J, Faraone SV. Attention-deficit hyperactivity disorder. Lancet, 2005; 366(948):237-248.

Pelsser LM, Frankena K, Toorman J, et al. Effects of a restricted elimination diet on the behavior of children with attention-deficit hyperactivity disorder (INCA study): a randomized controlled trial. Lancet, 2011; 377(9764):494-503.

Konstantareas MM, Homatidis S. Ear infections in autistic and normal children. J Autism Dev Disord, 1987; 17(4):585-594.

Bransfield RC, Wulfman JS, Harvey WT, Usman AI. The association between tick-borne infections, Lyme borreliosis and autism spectrum disorders. Med Hypotheses, 2008; 70(5):967-974.

Lintas C, Altieri L, Lombardi F, et al. Association of autism with polyomavirus infection in postmortem brains. J Neurovirol, 2010; 16(2):141-149.

Libbey JE, Sweeten TL, McMahon WM, Fujinami RS. Autistic disorder and viral infections. J Neurovirol, 2005; 11(1):1-10.

Bransfield RC. The psychoimmunology of Lyme/tick-borne diseases and its association with neuropsychiatric symptoms. Open Neurol J, 2012; 6(Suppl 1-M3):88-93.

Singh VK, Jensen RL. Elevated levels of measles antibodies in children with autism. Pediatr Neurol, 2003; 28(4):292-294.

Gentile I, Zappulo E, Bonavolta R, et al. Exposure to varicella zoster virus is higher in children with autism spectrum disorder than in healthy controls. Results from a case-control study. In Vivo, 2014; 28(4):627-631.

Ajamian M, Kosofsky BE, Wormser GP, et al. Serologic markers of Lyme disease in children with autism. JAMA, 2013; 309(17):1771-1773.

Burbelo PD, Swedo SE, Thurm A, et al. Lack of serum antibodies against Borrelia burgdorferi in children with autism. Clin Vaccine Immunol, 2013; 20(7):1092-1093,

Satterfield BC, Garcia RA, Gurrieri F, Schwartz CE. PCR and serology find no association between xenotropic murine leukemia virus-related virus (XMRV) and autism. Molec Autism, 2011; 1(1):14. doi:10.1186/2040-2392-1-14.

Arican N, Kaya M, Kalayci R, et al. Effects of lipopolysaccharide on blood–brain barrier permeability during pentylenetetrazole-induced epileptic seizures in rats. Life Sciences, 2006; 79(1):1-7.

Maes M, Kubera M, Leunis J-C, et al. The gut-brain barrier in major depression: intestinal mucosal dysfunction with an increased translocation of LPS from gram negative enterobacteria (leaky gut) plays a role in the inflammatory pathophysiology of depression. Neuroendocrionl Lett, 2008; 1(29):117-124.

Mayhan WG. Effect of lipopolysaccharide on the permeability and reactivity of the cerebral microcirculation: role of inducible nitric oxide synthase. Brain Res, 1998; 792(2):353-357.

Choi GB, Yim YS, Wong H, et al. The maternal interleukin-17a pathway in mice promotes autismlike phenotypes in offspring. Science, 2016; 352(6276:933-939. doi:10.1126/science.aad0314.

Estes ML, McAllister AK. Maternal TH 17 cells take a toll on baby’s brain. Science, 2016; 351(6276):919-920.

Dobeš J, Neuwirth A, Dobešová M, et al. Gastrointestinal Autoimmunity Associated With Loss of Central Tolerance to Enteric α-Defensins. Gastroenterology, 2015; 149(1):139-50. doi:10.1053/j.gastro.2015.05.009.

Kharrazian D. Toxicant loss of immune tolerance, neurologic disease, and nutritional strategies. Funct Neurol Rehabil Ergon, 2013; 3(2-3):203-213.

Baker SM. Learning about autism. Global Adv Health Med, 2013; 2(6):38-46. doi:10.7453/gahmj.2013.068.

Davison K. Autoimmunity in psychiatry. Br J Psychiatry, 2012; 200(5):353-355. doi:10.1192/bjp.bp.11.104471.

Ashwood P, Wills S, Van de Water J. The immune response in autism: a new frontier for autism research. J Leukoc Biol, 2006; 80(1):1-15.

Daneman R, Rescigno M. The gut immune barrier and the blood-brain barrier: are they so different? Immunity, 2009; 31(5):722-735. doi:10.1016/j.immuni.2009.09.012.

Groschwitz KR, Hogan SP. Intestinal barrier function: molecular regulation and disease pathogenesis. J Allergy Clin Immunol, 2009; 124(1):3-20.

Turner J. Molecular Basis of epithelial barrier regulation, from basic mechanisms to clinical application. Am J Path, 2006; 169(6):1901-1909.

Bischoff SC, Barbara G, Buurman W, et al. Intestinal permeability – a new target for disease prevention and therapy. BMC Gastroenterol, Nov 2014; 14:189.

Vojdani A, Vojdani E, Kharrazian D. Fluctuation of zonulin levels in blood versus stability of antibodies. World J Gastroenterol, 2017; 23(31):5669-5679.

Banks WA. The blood-brain barrier: connecting the gut and the brain. Regul Pept, 2008; 149(1-3):11-14. doi:10.1016/j.regpep.2007.08.027.

Friedman A, Kaufer D, Shemer J, et al. Pyridostigmine brain penetration under stress enhances neuronal excitability and induces early immediate transcriptional response. Nature Med, 1996; 2(12):1382-1395.

Hanin I. The gulf war, stress and leaky blood-brain-barrier. Nature Med, 1996; 2(12):1307-1308.

Pardridge WM. Targeting neurotherapeutic agents through the blood-brain barrier. Arch Neurol, 2002; 59(1):35-40.

Persidsky Y, Stins M, Way D, et al. A model for monocyte migration through the blood–brain barrier during HIV-1 encephalitis. J Immunol, 1997; 158(7):3499-3510.

Dohgu S, Banks WA. Lipopolysaccharide-enhanced transcellular transport of HIV-1 across the blood–brain barrier is mediated by the p38 mitogen-activated protein kinase pathway. Exp Neurol, 2008; 210(2):740-749.

Dohgu S, Banks WA. Brain pericytes increase the lipopolysaccharide-enhanced transcytosis of HIV-1 free virus across the in vitro blood–brain barrier: evidence for cytokine-mediated pericyte-endothelial cell crosstalk. Fluids Barriers CNS, 2013; 10(1):23. doi:10.1186/2045-8118-10-23.

Mokarizadeh A, Abdollahi M, Rezvanfar M-A, Rahmani M-R. The possible role of peripherally generated cross-reactive IgG in breakdown of the blood–brain barrier and initiation of multiple sclerosis. Iranian J Med Hypotheses Ideas, 2013; 8(2):63-68.

Luissint A-C, Artus C, Glacial F, et al. Tight junctions at the blood brain barrier: physiological architecture and disease-associated dysregulation. Fluids Barriers CNS, 2012; 9(1):23.

Theoharides TC, Zhang B. Neuro-inflammation, blood-brain barrier, seizures and autism. J Neuroinflammation, Nov 2011; 8:168.

Mostafa GA, Al-Ayadhi LY. A lack of association between hyperserotonemia and the increased frequency of serum anti-myelin basic protein auto-antibodies in autistic children. J Neuroinflammation, Jun 2011; 8:71. doi:10.1186/1742-2094-8-71.

Cohly HH, Panja A. Immunological findings in autism. Int Rev Neurobiol, 2005; 71:317-314.

Al-Ayadhi LY, Mostafa GA. Low plasma progranulin levels in children with autism. J Neuroinflammation, Sep 2011; 8:111. doi:10.1186/1742-2094-8-111.

Mostafa GA, Al-Ayadhi LY. The possible relationship between allergic manifestations and elevated serum levels of brain specific auto-antibodies in autistic children. J Neuroimmunol, 2013; 261(1-2):77-81. doi:10.1016/j.jneuroim.2013.04.003.

Braunschweig D, Golub MS, Koenig CM, et al. Maternal autism-associated IgG antibodies delay development and produce anxiety in a mouse gestational transfer model. J Neuroimmunol, 2012; 252(1-2):56-65. doi:10.1016/j.jneuroim.2012.08.002.

Rodriguez JI, Kern JK. Evidence of microglial activation in autism and its possible role in brain underconnectivity. Neuron Glia Biol, 2011; 7(2-4):205-213. doi:10.1017/S1740925X12000142.

Pardo CA, Vargas DL, Zimmerman AW. Immunity, neuroglia and neuroinflammation in autism. Int Rev Psychiatry, 2005; 17(6):485-495.

Vargas DL, Nascimbene C, Krishnan C, et al. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol, 2005; 57(1):67-81.

Singh VK, Warren RP, Odell JD, et al. Antibodies to myelin basic protein in children with autistic behavior. Brain Behav Immun, 1993; 7(1):97-103.

Zimmerman AW, Connors SL, Matteson KJ, et al. Maternal antibrain antibodies in autism. Brain Behav Immun, 2007; 21(3):351-357. doi:10.1016/j.bbi.2006.08.005.

Mostafa GA, El-Sayed ZA, El-Aziz MMA, El-Sayed MF. Serum anti-myelin—associated glycoprotein antibodies in Egyptian autistic children. J Child Neurol, 2008; 23(12):1413-1418.

Vojdani A, Kharrazian D, Makherjee PS. The prevalence of antibodies against wheat and milk proteins in blood donors and their contribution to neuroimmune reactivities. Nutrients, 2014; 6(1):15-36. doi:10.3390/nu6010015.

Goines P, Haapanen L, Boyce R, et al. Autoantibodies to cerebellum in children with autism associate with behavior. Brain Behav Immun, 2011; 25(3):514-523. doi:10.1016/j.bbi.2010.11.017.

Hampson DR, Blatt GJ. Autism spectrum disorders and neuropathology of the cerebellum. Front Neurosci, Nov 2015; 9:420. doi:10.3389/fnins.2015.00420.

Fassio A, Patry L, Congia S, et al. SYN1 loss-of-function mutations in autism and partial epilepsy cause impaired synaptic function. Hum Mol Genet, 2011; 20(12):2297-2307. doi:10.1093/hmg/ddr122.

Paonessa F, Latifi S, Scarongella H, et al. Specificity Protein 1 (Sp1)-dependent Activation of the Synapsin I Gene (SYN1) Is Modulated by RE1-silencing Transcription Factor (REST) and 5′-Cytosine-Phosphoguanine (CpG) Methylation. J Biologic Chem, 2012; 288(5):3227-3239. doi:10.1074/jbc.M112.399782.

Vojdani A. Lectins, agglutinins, and their roles in autoimmune reactivities. Altern Ther Health Med, 2015; 21(Suppl 1):46-51.



  • There are currently no refbacks.
Copyright 2016. All rights reserved.