Fructose Metabolism in the Brain

Sarah A. Oppelt, Dean R. Tolan

Abstract


Liver and kidneys are responsible for metabolism of 40-60% of ingested fructose, while the physiological fate of the remaining fructose remains poorly understood.  Currently, fructose may constitute 5-15% of daily caloric intake in the Western diet.  In humans, chronic fructose ingestion correlates with the development of a number of disease states, including insulin resistance, microvascular damage, and inflammation in liver and kidneys, while effects on other organs able to metabolize fructose remains unknown. This highlights the need for a better understanding of fructose metabolism throughout the body. Recently, the brain has been identified as one of the extrahepatic tissues that participate in fructose metabolism.  It has been known for nearly 50 years that fructose can be metabolized by brain tissue from experiments conducted on cultured brain slices, and more recent research has identified specific regions of the brain that can metabolize fructose.  Here, metabolic pathways for fructose are reviewed. Experiments are described that establish the brain as contributing to fructose metabolism outside the liver in a physiologically meaningful way.  In addition to dietary fructose, the brain is capable of de novo fructose production via the polyol pathway.  The polyol pathway is an important pathway in maintaining osmotic homeostasis.  In this pathway, excess dietary glucose is converted to fructose, exposing cells to fructose independent of dietary ingestion.  Lastly, high fructose diets, type II diabetes, and metabolic syndrome have been associated with impaired memory formation, increased insulin resistance, and inflammation in the brain, and development of dementia in humans.  The underlying mechanisms are still not understood, and will probably be multi-factorial, but it may be possible to target enzymes in the fructose metabolism.  Because the incidence rates of both type II diabetes and metabolic syndrome are rising in Western populations, understanding the contribution of fructose metabolism to these conditions is imperative. 


Full Text:

 Subscribers Only

References


References

Bergheim I, Weber S, Vos M, Kramer S, Volynets V, Kaserouni S, et al. Antibiotics protect against fructose-induced hepatic lipid accumulation in mice: role of endotoxin. J Hepatol. 2008;48(6):983-92.

Nakayama T, Kosugi T, Gersch M, Connor T, Sanchez-Lozada LG, Lanaspa MA, et al. Dietary fructose causes tubulointerstitial injury in the normal rat kidney. Am J Physiol Renal Physiol. 2010;298(3):F712-20.

Gersch MS, Mu W, Cirillo P, Reungjui S, Zhang L, Roncal C, et al. Fructose, but not dextrose, accelerates the progression of chronic kidney disease. Am J Physiol Renal Physiol. 2007;293(4):F1256-61.

Thuy S, Ladurner R, Volynets V, Wagner S, Strahl S, Konigsrainer A, et al. Nonalcoholic fatty liver disease in humans is associated with increased plasma endotoxin and plasminogen activator inhibitor 1 concentrations and with fructose intake. J Nutr. 2008;138(8):1452-5.

Ouyang X, Cirillo P, Sautin Y, McCall S, Bruchette JL, Diehl AM, et al. Fructose consumption as a risk factor for non-alcoholic fatty liver disease. J Hepatol. 2008;48(6):993-9.

Basaranoglu M, Basaranoglu G, Bugianesi E. Carbohydrate intake and nonalcoholic fatty liver disease: fructose as a weapon of mass destruction. Hepatobiliary Surg Nutr. 2015;4(2):109-16.

Mayes PA. Intermediary metabolism of fructose. Am J Clin Nutr. 1993;58(5 Suppl):754S-65S.

Douard V, Ferraris RP. Regulation of the fructose transporter GLUT5 in health and disease. Am J Physiol Endocrinol Metab. 2008;295(2):E227-37.

Gaby AR. Adverse effects of dietary fructose. Altern Med Rev. 2005;10(4):294-306.

Ishimoto T, Lanaspa MA, Le MT, Garcia GE, Diggle CP, Maclean PS, et al. Opposing effects of fructokinase C and A isoforms on fructose-induced metabolic syndrome in mice. Proc Natl Acad Sci USA. 2012;109(11):4320-5.

Wolfe BM, Ahuja SP, Marliss EB. Effects of intravenously administered fructose and glucose on splanchnic amino acid and carbohydrate metabolism in hypertriglyceridemic men. J Clin Invest. 1975;56(4):970-7.

Holdsworth CD, Dawson AM. The Absorption of Monosaccharides in Man. Clin Sci. 1964;27:371-9.

Funari VA, Crandall JE, Tolan DR. Fructose metabolism in the cerebellum. Cerebellum. 2007;6(2):130-40.

Oppelt SA, Zhang W, Tolan DR. Specific regions of the brain are capable of fructose metabolism. Brain Res. 2017;1657:312-22.

Burant CF, Saxena M. Rapid reversible substrate regulation of fructose transporter expression in rat small intestine and kidney. Am J Physiol. 1994;267(1 Pt 1):G71-9.

Helliwell PA, Richardson M, Affleck J, Kellett GL. Stimulation of fructose transport across the intestinal brush-border membrane by PMA is mediated by GLUT2 and dynamically regulated by protein kinase C. Biochem J. 2000;350 Pt 1:149-54.

Burant CF, Takeda J, Brot-Laroche E, Bell GI, Davidson NO. Fructose transporter in human spermatozoa and small intestine is GLUT5. J Biol Chem. 1992;267(21):14523-6.

Litherland GJ, Hajduch E, Gould GW, Hundal HS. Fructose transport and metabolism in adipose tissue of Zucker rats: diminished GLUT5 activity during obesity and insulin resistance. Mol Cell Biochem. 2004;261(1-2):23-33.

Manolescu A, Salas-Burgos AM, Fischbarg J, Cheeseman CI. Identification of a hydrophobic residue as a key determinant of fructose transport by the facilitative hexose transporter SLC2A7 (GLUT7). J Biol Chem. 2005;280(52):42978-83.

Mueckler M, Thorens B. The SLC2 (GLUT) family of membrane transporters. Mol Aspects Med. 2013;34(2-3):121-38.

Thorens B, Mueckler M. Glucose transporters in the 21st Century. Am J Physiol Endocrinol Metab. 2010;298(2):E141-5.

Anzai N, Ichida K, Jutabha P, Kimura T, Babu E, Jin CJ, et al. Plasma urate level is directly regulated by a voltage-driven urate efflux transporter URATv1 (SLC2A9) in humans. J Biol Chem. 2008;283(40):26834-8.

Gaster M, Handberg A, Schurmann A, Joost HG, Beck-Nielsen H, Schroder HD. GLUT11, but not GLUT8 or GLUT12, is expressed in human skeletal muscle in a fibre type-specific pattern. Pflugers Arch. 2004;448(1):105-13.

Scheepers A, Schmidt S, Manolescu A, Cheeseman CI, Bell A, Zahn C, et al. Characterization of the human SLC2A11 (GLUT11) gene: alternative promoter usage, function, expression, and subcellular distribution of three isoforms, and lack of mouse orthologue. Mol Membr Biol. 2005;22(4):339-51.

Rand EB, Depaoli AM, Davidson NO, Bell GI, Burant CF. Sequence, tissue distribution, and functional characterization of the rat fructose transporter GLUT5. Am J Physiol. 1993;264(6 Pt 1):G1169-G76.

Purcell SH, Aerni-Flessner LB, Willcockson AR, Diggs-Andrews KA, Fisher SJ, Moley KH. Improved Insulin Sensitivity by GLUT12 Overexpressed in Mice. Diabetes. 2011;60:1478-82.

Shepherd PR, Gibbs EM, Wesslau C, Gould GW, Kahn BB. Human small intestine facilitative fructose/glucose transporter (GLUT5) is also present in insulin-responsive tissues and brain. Investigation of biochemical characteristics and translocation. Diabetes. 1992;41(10):1360-5.

Mantych GJ, James DE, Devaskar SU. Jejunal/kidney glucose transporter isoform (Glut-5) is expressed in the human blood-brain barrier. Endocrinol. 1993;132(1):35-40.

Adelman RC, Ballard FJ, Weinhouse S. Purification and properties of rat liver fructokinase. J Biol Chem. 1967;242(14):3360-5.

Raushel FM, Cleland WW. The substrate and anomeric specificity of fructokinase. J Biol Chem. 1973;248(23):8174-7.

Sols A, Crane RK. Substrate specificity of brain hexokinase. J Biol Chem. 1954;210:581-95.

Schimke RT, Grossbard L. Studies on isozymes of hexokinase in animal tissues. Ann N Y Acad Sci. 1968;151(1):332-50.

Stocchi V. Multiple Forms of Human Red Blood Cell Hexokinase. J Biol Chem. 1982;257(5):2357-64.

Xu KY, Zweier JL, Becker LC. Functional coupling between glycolysis and sarcoplasmic reticulum Ca2+ transport. Circ Res. 1995;77(1):88-97.

Penhoet EE, Kochman M, Rutter WJ. Isolation of fructose diphosphate aldolases A, B, and C. Biochemistry. 1969;8(11):4391-5.

Penhoet EE, Rutter WJ. Catalytic and immunochemical properties of homomeric and heteromeric combinations of aldolase subunits. J Biol Chem. 1971;246(2):318-23.

Pezza JA, Choi KH, Berardini TZ, Beernink PT, Allen KN, Tolan DR. Spatial clustering of isozyme-specific residues reveals unlikely determinants of isozyme specificity in fructose 1,6-bisphosphate aldolase. J Biol Chem. 2003;278(19):17307-13.

Kusakabe T, Motoki K, Hori K. Human aldolase C: characterization of the recombinant enzyme expressed in Escherichia coli. J Biochem (Tokyo). 1994;115(6):1172-7.

Baron CB, Tolan DR, Choi KH, Coburn RF. Aldolase A Ins(1,4,5)P3-binding domains as determined by site-directed mutagenesis. Biochem J. 1999;341(Pt 3):805-12.

Bais R, James HM, Rofe AM, Conyers RA. The purification and properties of human liver ketohexokinase. A role for ketohexokinase and fructose-bisphosphate aldolase in the metabolic production of oxalate from xylitol. Biochem J. 1985;230(1):53-60.

Diggle CP, Shires M, Leitch D, Brooke D, Carr IM, Markham AF, et al. Ketohexokinase: expression and localization of the principal fructose-metabolizing enzyme. J Histochem Cytochem. 2009;57(8):763-74.

Asipu A, Hayward BE, O'Reilly J, Bonthron DT. Properties of normal and mutant recombinant human ketohexokinases and implications for the pathogenesis of essential fructosuria. Diabetes. 2003;52(9):2426-32.

Hayward BE, Bonthron DT. Structure and alternative splicing of the ketohexokinase gene. Eur J Biochem. 1998;257(1):85-91.

Mirtschink P, Krishnan J, Grimm F, Sarre A, Horl M, Kayikci M, et al. HIF-driven SF3B1 induces KHK-C to enforce fructolysis and heart disease. Nature. 2015;522(7557):444-9.

Lanaspa MA, Sanchez-Lozada LG, Cicerchi C, Li N, Roncal-Jimenez CA, Ishimoto T, et al. Uric acid stimulates fructokinase and accelerates fructose metabolism in the development of fatty liver. PLoS One. 2012;7(10):e47948.

Buemann B, Toubro S, Holst JJ, Rehfeld JF, Bibby BM, Astrup A. D-tagatose, a stereoisomer of D-fructose, increases blood uric acid concentration. Metabol. 2000;49(8):969-76.

Fishman RA. Studies of the Transport of Sugars between Blood and Cerebrospinal Fluid in Normal States and in Meningeal Carcinomatosis. Trans Am Neurol Assoc. 1963;88:114-8.

Ahn AH, Dziennis S, Hawkes R, Herrup K. The cloning of zebrin II reveals its identity with aldolase C. Development. 1994;120(8):2081-90.

Chain EB, Rose SP, Masi I, Pocchiari F. Metabolism of hexoses in rat cerebral cortex slices. J Neurochem. 1969;16(1):93-100.

Wada H, Okada Y, Uzuo T, Nakamura H. The effects of glucose, mannose, fructose and lactate on the preservation of neural activity in the hippocampal slices from the guinea pig. Brain Res. 1998;788(Mar 30):144-50.

Stein HH, Cohen J. The measurement by a microtitration technique of carbon dioxide production in rat brain slices. Studis with glucose, fructose, and xylitol. Anal Biochem. 1976;71(2):444-51.

Izumi Y, Zorumski CF. Glial-neuronal interactions underlying fructose utilization in rat hippocampal slices. Neurosci. 2009;161(3):847-54.

Bachelard HS, Cox DW, Drower J. Sensitivity of guinea-pig hippocampal granule cell field potentials to hexoses in vitro: an effect on cell excitability? J Physiol. 1984;352:91-102.

Lebherz HG, Rutter WJ. Distribution of fructose diphosphate aldolase variants in biological systems. Biochemistry. 1969;8(1):109-21.

Pellerin L, Magistretti P. Neuroenergetics: Calling upon Astrocytes to Satisfy Hungry Neurons. Neuroscientist. 2004;10(1):53-62.

Brown AM, Baltan Tekkok S, Ransom BR. Energy transfer from astrocytes to axons: the role of CNS glycogen. Neurochem Int. 2004;45(4):529-36.

Dringen R, Gebhard R, Hamprecht B. Glycogen in astrocytes-possible function as lactate supply for neighboring cells. Brain Res. 1993;623.

Prockop L. Hyperglycemia, polyol accumulation, & increased intracranial pressure. Arch Neurol. 1971;25:126-40.

Asnaghi V, C Gerhardinger, T Hoehn, A Adeboje, M Lorenzi. A role for the Polyol Pathway in the early neuroretinal apoptaosis & glial changes induced by diabetes in the rat. Diabetes. 2003;52.

Tilton R, K Chang, JR Nyengaard, M Van den Enden, Y Ido, JR Williamson. Inhibition of Sorbital Dehydrogenase - effects on vascular & neural dysfunction in streptozocin-induced diabetic rats. Diabetes. 1995;44.

Hwang JJ, Jiang L, Hamza M, Dai F, Belfort-DeAguiar R, Cline G, et al. The human brain produces fructose from glucose. JCI Insight. 2017;2(4):e90508.

Srivastava SK, Ramana KV, Bhatnagar A. Role of aldose reductase and oxidative damage in diabetes and the consequent potential for therapeutic options. Endocr Rev. 2005;26(3):380-92.

Travis S, Morrison A, Clements R, Jr, Winegrad A, Oski FA. Metabolic alteration in the human erythrocyte produced by increases in glc concentration. J Clin Invest. 1971;50.

Lanaspa MA, Ishimoto T, Li N, Cicerchi C, Orlicky DJ, Ruzicky P, et al. Endogenous fructose production and metabolism in the liver contributes to the development of metabolic syndrome. Nat Commun. 2013;4:2434.

Lanaspa MA, Ishimoto T, Cicerchi C, Tamura Y, Roncal-Jimenez CA, Chen W, et al. Endogenous fructose production and fructokinase activation mediate renal injury in diabetic nephropathy. J Am Soc Nephrol. 2014;25(11):2526-38.

Chung SS, Ho EC, Lam KS, Chung SK. Contribution of polyol pathway to diabetes-induced oxidative stress. J Am Soc Nephrol. 2003;14(8 Suppl 3):S233-6.

Cameron N, MA Cotter, M Basso, TC Hohman. Comparison of the effects of inhibitors of aldose reductase & sorbitol dehydrogenase on neurovascular function, nerve conduction & tissue polyol pathway metabolites in streptozotocin-diabetic rats. Diabetologia. 1997;40:271-81.

Hao W, Tashiro S, Hasegawa T, Sato Y, Kobayashi T, Tando T, et al. Hyperglycemia Promotes Schwann Cell De-differentiation and De-myelination via Sorbitol Accumulation and Igf1 Protein Down-regulation. J Biol Chem. 2015;290(28):17106-15.

Wolf J, NU Nguyen, G Dumoulin, S Berthelay. Influence of hypertonic monosaccharide infusion on the release of plasm arginine vasopressin in normal humans. Horm Metab Res. 1992;24:379-83.

Nakagawa T, Hu H, Zharikov S, Tuttle KR, Short RA, Glushakova O, et al. A causal role for uric acid in fructose-induced metabolic syndrome. Am J Physiol Renal Physiol. 2006;290(3):F625-31.

Lanaspa MA, Sanchez-Lozada LG, Choi YJ, Cicerchi C, Kanbay M, Roncal-Jimenez CA, et al. Uric acid induces hepatic steatosis by generation of mitochondrial oxidative stress: potential role in fructose-dependent and -independent fatty liver. J Biol Chem. 2012;287(48):40732-44.

Dehghan A, M Van Hoek, EJG Sijbrands, A Hoffman, JCM Witteman. High serum uric acid as a novel risk factor for Type 2 Diabetes. Diabetes Care. 2008;31(2):361-2.

Johnson RJ, Perez-Pozo SE, Sautin YY, Manitius J, Sanchez-Lozada LG, Feig DI, et al. Hypothesis: could excessive fructose intake and uric acid cause type 2 diabetes? Endocr Rev. 2009;30(1):96-116.

Song Z, Roncal-Jimenez CA, Lanaspa-Garcia MA, Oppelt SA, Kuwabara M, Jensen T, et al. Role of fructose and fructokinase in acute dehydration-induced vasopressin gene expression and secretion in mice. J Neurophysiol. 2017;117(2):646-54.

Zhang QY, Pan Y, Wang R, Kang LL, Xue QC, Wang XN, et al. Quercetin inhibits AMPK/TXNIP activation and reduces inflammatory lesions to improve insulin signaling defect in the hypothalamus of high fructose-fed rats. Journal of Nutritional Biochemistry. 2014;25(4):420-8.

Hwang JJ, Johnson A, Cline G, Belfort-DeAguiar R, Snegovskikh D, Khokhar B, et al. Fructose levels are markedly elevated in cerebrospinal fluid compared to plasma in pregnant women. PLoS One. 2015;10(6):e0128582.

Page K, O Chan, J Arora, R Belfort-DeAguiar, J Dzuira, B Roehmholdt, GW Cline, S Naik, R Sinha, RT Constable, RS Sherwin. Effects of Fructose vs Glucose on regional cerebral blood flow in brain regions involved with appetite and reward pathways. J Am Med Assoc. 2013;309(1).

Hers H, Kusaka T. Le Métabolisme du fructose 1-phosphate dans le foie. Biochim Biophys Acta. 1953;11:427-32.

Froesch ER, Wolf HP, Baitsch H, Prader A, Labhart A. Hereditary fructose intolerance. An inborn defect of hepatic fructose-1-phosphate splitting aldolase. Am J Med. 1963;34:151-67.

Fox I, WN Kelley. Studies on the mechanism of fructose-induced hyperuricemia in man. Metabol. 1972;21(8):713-21.

Morris RCJ, K Nigon, EB Reed. Evidence that the severity of depletionof inorganic phosphate determines the severity of the disturbance of adenine nucleotide metabolism in the liver and renal cortex of fructose-loaded rat. J Clin Invest. 1978;61.

Mock D, Perman J, Thaler M, Morris RC. Chronic fructose intoxication after infancy in children with hereditary fructose intolerance. New Engl J Med. 1983;309:764-70.

Cicerchi C, Li N, Kratzer J, Garcia G, Roncal-Jimenez CA, Tanabe K, et al. Uric acid-dependent inhibition of AMP kinase induces hepatic glucose production in diabetes and starvation: evolutionary implications of the uricase loss in hominids. Faseb J. 2014;28(8):3339-50.

Lanaspa MA, Cicerchi C, Garcia G, Li N, Roncal-Jimenez CA, Rivard CJ, et al. Counteracting roles of AMP deaminase and AMP kinase in the development of fatty liver. PLoS One. 2012;7(11):e48801.

Johnson RJ, Nakagawa T, Sanchez-Lozada LG, Shafiu M, Sundaram S, Le M, et al. Sugar, uric acid, and the etiology of diabetes and obesity. Diabetes. 2013;62(10):3307-15.

Tsouli SG, Liberopoulos EN, Mikhailidis DP, Athyros VG, Elisaf MS. Elevated serum uric acid levels in metabolic syndrome: an active component or an innocent bystander? Metabol. 2006;55(10):1293-301.

Sui X, Church TS, Meriwether RA, Lobelo F, Blair SN. Uric acid and the development of metabolic syndrome in women and men. Metabol. 2008;57(6):845-52.

Willette AA, Johnson SC, Birdsill AC, Sager MA, Christian B, Baker LD, et al. Insulin resistance predicts brain amyloid deposition in late middle-aged adults. Alzheimer's and Dementia. 2015;11(5):504-10 e1.

de la Monte SM, Tong M. Brain metabolic dysfunction at the core of Alzheimer's disease. Biochem Pharmacol. 2014;88(4):548-59.

Messier C, Whately K, Liang J, Du L, Puissant D. The effects of a high-fat, high-fructose, and combination diet on learning, weight, and glucose regulation in C57BL/6 mice. Behav Brain Res. 2007;178(1):139-45.

Molteni R, Barnard RJ, Ying Z, Roberts CK, Gomez-Pinilla F. A high fat, refined sugar diet reduces hippocampal brain-derived neurotrophic factor, neuronal plasticity, and learning. Neurosci. 2002;112(4):803-14.

Farooqui AA, Farooqui T, Panza F, Frisardi V. Metabolic syndrome as a risk factor for neurological disorders. Cell Mol Life Sci. 2012;69(5):741-62.

Abner EL, Nelson PT, Kryscio RJ, Schmitt FA, Fardo DW, Woltjer RL, et al. Diabetes is associated with cerebrovascular but not Alzheimer's disease neuropathology. Alzheimers Dement. 2016;12(8):882-9.

de La Monte SM. Alzheimer's Disease is Type 3 Diabetes - evidence reviewed. 2008;Journal of Diabetes Science and Technology(2):6.

Whitmer R, EP Gunderdson, CP Quesenberry, J Zhou, K Yaffe. Body Mass Index in Midlife and Risk of Alzheimer Disease and Vascular Dementia

. Current Alzheimer Research

. 2007;4(2).

Cholerton B, Baker LD, Craft S. Insulin, cognition, and dementia. European Journal of Pharmacology. 2013;719(1-3):170-9.

Yin QQ, Pei JJ, Xu S, Luo DZ, Dong SQ, Sun MH, et al. Pioglitazone improves cognitive function via increasing insulin sensitivity and strengthening antioxidant defense system in fructose-drinking insulin resistance rats. PLoS One. 2013;8(3):e59313.

Sharma B, N Singh, M Singh. Modulation of celecoxib- and streptozotocin-induced experimental dementia of AD by pitavastatin and donepezil. Journal of Psychopharmacology. 2008;22(2):162-71.

Lester-Coll N, EJ Rivera, SJ Soscia, K Doiron, JR Wands, SM de la Monte. Intracerebral streptozotocin model of type 3 diabetes: Relevance to sporadic Alzheimer's disease. Journal of Alzheimer's Disease. 2006;9(1):13-33.

Steen E, BM Terry, EJ Rivera, JL Cannon, TR Neely, R Tavares, XJ Xu, JR Wands, SM de la Monte. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer's disease – is this type 3 diabetes? Journal of Alzheimer's Disease. 2005;7(1):63-80.

Agrawal R, Noble E, Vergnes L, Ying Z, Reue K, Gomez-Pinilla F. Dietary fructose aggravates the pathobiology of traumatic brain injury by influencing energy homeostasis and plasticity. J Cereb Blood Flow Metab. 2016;36(5):941-53.

Levitt P. Structural and functional maturation of the developing primate brain. J Ped. 2003;143(4 Suppl):S35-45.

Blakemore SJ, Choudhury S. Development of the adolescent brain: implications for executive function and social cognition. J Child Psychol Psychiatry. 2006;47(3-4):296-312.

Thorburn AW LS, AB Jenkins, S Khouri, EW Kraegen. Fructose-induced in vivo insulin resistance and elevated plasma triglyceride levels in rats. Am J Clin Nutr. 1989;49:1155-63.

Stanhope KL, Havel PJ. Fructose consumption: potential mechanisms for its effects to increase visceral adiposity and induce dyslipidemia and insulin resistance. Curr Opin Lipidol. 2008;19(1):16-24.

Dekker MJ, Su Q, Baker C, Rutledge AC, Adeli K. Fructose: a highly lipogenic nutrient implicated in insulin resistance, hepatic steatosis, and the metabolic syndrome. Am J Physiol Endocrinol Metab. 2010;299(5):E685-94.

Rayssiguier Y, Gueux E, Nowacki W, Rock E, Mazur A. High fructose consumption combined with low dietary magnesium intake may increase the incidence of the metabolic syndrome by inducing inflammation. Magnes Res. 2006;19(4):237-43.




DOI: http://dx.doi.org/10.18103/imr.v3i9.542

Refbacks

  • There are currently no refbacks.
Copyright 2016. All rights reserved.