Pharmacogenetics of Neurodegenerative disorders

Ramon Cacabelos, Carlos carril, Pablo Cacabelos, Lucia Fernández-Novoa, Meyyazhagan Arun

Abstract


Neurodegenerative disorders (NDDs)[Alzheimer’s disease (AD), Parkinson’s disease (PD)] are major problems of health in developed countries. NDDs are polygenic/complex disorders in which genomic, epigenomic, cerebrovascular, metabolic and environmental factors converge to define a progressive neurodegenerative phenotype. Current drugs for NDDs are not cost-effective in some instances and most of them are not devoid of complications after chronic treatment. Pharmacogenetics contributes to optimize therapeutics in NDDs. Different categories of genes are potentially involved in the pharmacogenetic network responsible for drug efficacy and safety. Pathogenic, mechanistic, metabolic, transporter, and pleiotropic genes represent the major genetic determinants of response to treatment in NDDs. In some pharmacogenetic studies with AD-related drugs (donepezil, rivastigmine, galantamine, memantine), APOE-4 carriers are the worst responders and APOE-3 carriers are the best responders to conventional treatments. Patients harboring the TOMM40-L/L genotype in haplotypes associated with APOE-4 are the worst responders and TOMM40-S/S carriers in haplotypes with APOE-3 are the best responders. Only 20% of the Caucasian population are extensive metabolizers for tetragenic haplotypes integrating CYP2D6-CYP2C19-CYP2C9-CYP3A4/5 variants. Patients harboring CYP-related poor (PM) and/or ultra-rapid (UM) geno-phenotypes display more irregular profiles in drug metabolism than extensive (EM) or intermediate (IM) metabolizers. The security and safety of anti-Parkinsonian drugs [dopamine precursors (L-DOPA), dopamine agonists (amantadine, apomorphine, bromocriptine, cabergoline, lisuride, pergolide, pramipexole, ropinirole, rotigotine), monoamine oxidase (MAO) inhibitors (selegiline, rasagiline), and catechol-O-methyltransferase (COMT) inhibitors (entacapone, tolcapone)] are also highly influenced by pharmacogenetic factors. In addition, epigenetic aberrations (DNA methylation, histone modifications, miRNA dysregulation) in genes configuring the pharmacoepigenetic cascade can also modify the response/resistance to drugs. Consequently, novel strategies in drug development, either preventive or therapeutic, for NDDs should take into consideration these pharmacogenetic determinants for treatment optimization.

Keywords:

Alzheimer’s disease, APOE, Atremorine, Epigenetics, CYPs, Neurodegenerative disorders, Parkinson’s disease, Pharmacogetics.

Keywords


medical, medicine,research,pharmacology

Full Text:

 Subscribers Only

References


References

Cacabelos R. Impact of genomic medicine on the future of Neuropsychopharmacology. J Neuropsychopharmacol Mental Health 2015, 1:1. Http://dx.doi.org/10.4172/jnpmh.1000e101.

Patel V, Chisholm D, Dua T, Laxminarayan R, Medina-Mora ME (Ed). Mental, Neurological, and Substance Use Disorders. Disease Control Priorities. Third Edition. Vol. 4. World Bank Group, Washington, 2015.

Cacabelos R, Teijido O, Carril JC. Can cloud-based tools accelerate Alzheimer's disease drug discovery? Expert Opin Drug Discov. 2016;11(3):215-23. doi: 10.1517/17460441.2016.1141892.

Cacabelos R, Cacabelos P, Torrellas C, Tellado I, Carril JC. Pharmacogenomics of Alzheimer's disease: novel therapeutic strategies for drug development. Methods Mol Biol. 2014;1175:323-556. doi: 10.1007/978-1-4939-0956-8_13.

Cacabelos R, Goldgaber D, Vostrov A, Matsuki H, Torrellas C, Corzo D, Carril JC, Roses AD. APOE-TOMM40 in the Pharmacogenomics of dementia. J Pharmacogenomics Pharmacoproteomics 2014; 5: 135. Doi:10.4172/2153-0645.1000135.

Cacabelos R, Torrellas C, Carrera I. Opportunities in Pharmacogenomics for the treatment of Alzheimer’s Disease. Future Neurology 2015; 10(3):229-252.

Cacabelos R, Torrellas C, Carrera I, Cacabelos P, Corzo L, Fernández-Novoa L, Tellado I, Carril JC, Aliev G. Novel Therapeutic Strategies for Dementia. CNS Neurol Disord Drug Targets. 2016;15(2):141-241.

Cacabelos R. The complexity of Alzheimer’s disease pharmacogenomics and metabolomics in drug development. Metabolomics 2016; 2:6. http://dx-doi.org/10.4172/2153-0769.1000e145.

Cacabelos R, Torrellas C, Teijido O, Carril JC. Pharmacogenetic considerations in the treatment of Alzheimer's disease. Pharmacogenomics. 2016;17(9):1041-74. doi: 10.2217/pgs-2016-0031.

von Campenhausen S, Bornschein B, Wick R, Bötzel K, Sampaio C, Poewe W, et al. Prevalence and incidence of Parkinson's disease in Europe. Eur Neuropsychopharmacol. 2005; 15:473-90.

Zou YM, Liu J, Tian ZY, Lu D, Zhou YY. Systematic review of the prevalence and incidence of Parkinson's disease in the People's Republic of China. Neuropsychiatr Dis Treat. 2015; 15:1467-1472. doi: 10.2147/NDT.S85380.

Hirsch L, Jette N, Frolkis A, Steeves T, Pringsheim T. The Incidence of Parkinson's Disease: A Systematic Review and Meta-Analysis. Neuroepidemiology. 2016; 46:292-300. doi: 10.1159/000445751.

Pringsheim T, Jette N, Frolkis A, Steeves TD. The prevalence of Parkinson's disease: a systematic review and meta-analysis. Mov Disord. 2014; 29:1583-90. doi: 10.1002/mds.25945.

Riedel O, Bitters D, Amann U, Garbe E, Langner I. Estimating the prevalence of Parkinson's disease (PD) and proportions of patients with associated dementia and depression among the older adults based on secondary claims data. Int J Geriatr Psychiatry. 2016; doi: 10.1002/gps.4414.

Carril JC, Cacabelos R. Genomics and Pharmacogenomics of cerebrovascular disorders. J Genomic Med Pharmacogenomics 2016; 1:27-75.

Teijido O, Cacabelos R. Interrogating the epigenome to unveil the secrets of neurodegeneration: Promising epigenetic therapies. J Genomic Med Pharmacogenomics 2016; 1:95-150.

Cacabelos R, Torrellas C. Epigenetic drug discovery for Alzheimer's disease. Expert Opin Drug Discov. 2014 Sep;9(9):1059-86. doi: 10.1517/17460441.2014.930124.

Mizzi C, Dalabira E, Kumuthini J, Dzimiri N, Balogh I, Başak N, et al. A European Spectrum of Pharmacogenomic Biomarkers: Implications for Clinical Pharmacogenomics. PLoS One. 2016;11(9):e0162866. doi: 10.1371/journal.pone.0162866. eCollection 2016.

Cacabelos R (Ed). World Guide for Drug Use and Pharmacogenomics. EuroEspes Publishing, Corunna, Spain, 2012.

Cacabelos R. Trial-and-Error versus Personalized Treatment in Depression: The Power of Pharmacogenomics. J Psychiatry Depress Anxiety 2016; 2:004.

Cacabelos R, Torrellas C. Pharmacogenomics of antidepressants. HSOA Journal of Psychiatry, Depression& Anxiety 2015; 1:001.

Cacabelos R, Carril JC, Cacabelos P, Teijido O, Goldgaber D. Pharmacogenomics of Alzheimer’s Disease: Genetic determinants of phenotypic variation and therapeutic outcome. J Genomic Med Pharmacogenomics, 2016; 1(2):151-209.

Dickmann LJ, Ware JA. Pharmacogenomics in the age of personalized medicine. Drug Discov Today Technol. 2016 Sep - Dec;21-22:11-16. doi: 10.1016/j.ddtec.2016.11.003.

Brown LC, Lorenz RA, Li J, Dechairo BM. Economic Utility: Combinatorial Pharmacogenomics and Medication Cost Savings for Mental Health Care in a Primary Care Setting. Clin Ther. 2017, pii: S0149-2918(17)30060-7. doi: 10.1016/j.clinthera.2017.01.022.

Lynch JA, Berse B, Dotson WD, Khoury MJ, Coomer N, Kautter J. Utilization of genetic tests: analysis of gene-specific billing in Medicare claims data. Genet Med. 2017. doi: 10.1038/gim.2016.209.

Luzum JA, Pakyz RE, Elsey AR, Haidar CE, Peterson JF, Whirl-Carrillo M, et al. Pharmacogenomics Research Network Translational Pharmacogenetics Program. "The Pharmacogenomics Research Network Translational Pharmacogenetics Program: Outcomes and Metrics of Pharmacogenetic Implementations Across Diverse Healthcare Systems". Clin Pharmacol Ther. 2017 Jan 16. doi: 10.1002/cpt.630.

Sugarman EA, Cullors A, Centeno J, Taylor D. Contribution of Pharmacogenetic Testing to Modeled Medication Change Recommendations in a Long-Term Care Population with Polypharmacy. Drugs Aging. 2016;33(12):929-936.

El-Mallakh RS, Roberts RJ, El-Mallakh PL, Findlay LJ3, Reynolds KK4. Pharmacogenomics in Psychiatric Practice. Clin Lab Med. 2016 Sep;36(3):507-23. doi: 10.1016/j.cll.2016.05.001.

Olson MC, Maciel A, Gariepy JF, Cullors A, Saldivar JS, Taylor D, Centeno J, Garces JA, Vaishnavi S. Clinical Impact of Pharmacogenetic-Guided Treatment for Patients Exhibiting Neuropsychiatric Disorders: A Randomized Controlled Trial. Prim Care Companion CNS Disord. 2017;19(2). doi: 10.4088/PCC.16m02036.

Chan CY.Clinicians' perceptions of pharmacogenomics use in psychiatry. Pharmacogenomics. 2017 Mar 14. doi: 10.2217/pgs-2016-0164.

Leahy LG. Genetic Testing for Psychopharmacology: Is It Ready for Prime Time? J Psychosoc Nurs Ment Health Serv. 2017;55(3):19-23. doi: 10.3928/02793695-20170301-02.

Plöthner M, Ribbentrop D, Hartman JP, Frank M. Cost-Effectiveness of Pharmacogenomic and Pharmacogenetic Test-Guided Personalized Therapies: A Systematic Review of the Approved Active Substances for Personalized Medicine in Germany. Adv Ther. 2016 Sep;33(9):1461-80. doi: 10.1007/s12325-016-0376-8.

Cacabelos R. (2008) Pharmacogenomics in Alzheimer's disease. Methods Mol Biol 2008;448:213-357.

Cacabelos R, Goldgaber D, Roses AD, Vostrov A, Matsuki H, et al. Gene interactions in the Pharmacogenomics of Alzheimer’s Disease. Int. J. Mol. Genet. Gene Ther. 2015; 1(1):[22 p]. http://dx.doi. org/10.16966/sggt.102.

Cacabelos R. Epigenetics of Brain Disorders: The Paradigm of Alzheimer’s disease. J Alzheimers Dis Parkinsonism 2016; 6:229. Doi: 10.4172/2161-0460.1000220.

Cacabelos R, Torrellas C. Epigenetics of aging and Alzheimer’s disease: implications for pharmacogenomics and drug response. Int J Mol Sci 2015; 16(2):30486-30543.

Cacabelos R, Torrellas C, López-Muñoz F. Epigenomics of Alzheimer’s Disease. J Exper Clin Med 2014; 6(3):75-82.

Cacabelos R. Epigenomic networking in drug development: From pathogenic mechanisms to pharmacogenomics. Drug Dev. Res. 2014; 75(6):348-365.

Szulwach KE, Jin P. Integrating DNA methylation dynamics into a framework for understanding epigenetic codes. Bioessays. 32014; 6(1):107-117.

Wang J, Yu JT, Tan MS, Jiang T, Tan L. Epigenetic mechanisms in Alzheimer's disease: Implications for pathogenesis and therapy. Ageing Res Rev. 2013;12(4):1024-1041.

Mastroeni D, Grover A, Delvaux E, Whiteside C, Coleman PD. Epigenetic mechanisms in Alzheimer’s disease. Neurobiol Aging. 2011; 32(7):1161-1180.

Qureshi IA, Mehler MF. Advances in epigenetics and epigenomics for neurodegenerative diseases. Curr. Neurol. Neurosci. Rep. 2011;11(5):464-473.

Cacabelos, R. Pharmacoepigenomics and the metabolomics of drug efficacy and safety. Metabolomics. 2015;(5):3.

Tang X, Chen S. Epigenetic regulation of cytochrome P450 enzymes and clinical implication. Curr. Drug. Metab. 2015; 16(2):86-96.

Kang H, Kim C, Lee H, Kim W, Lee EK. Post-transcriptional controls by ribonucleoprotein complexes in the acquisition of drug resistance. Int. J. Mol. Sci. 2013; 14(8):17204-17220.

Kim IW, Han N, Burckart GJ, Oh JM. Epigenetic changes in gene expression for drug-metabolizing enzymes and transporters. Pharmacotherapy. 2014; 34(2):140-150.

Cacabelos R. Metabolomics of drug resistance in cancer: The Epigenetic Component. Metabolomics. 2015; (5):e141.

Gräff J, Tsai LH. The potential of HDAC inhibitors as cognitive enhancers. Annu. Rev. Pharmacol. Toxicol. 2013;53:311-330.

Adwan L, Zawia NH. Epigenetics: a novel therapeutic approach for the treatment of Alzheimer’s disease. Pharmacol Ther 2013; 139(1):41-50.

Caraci F, Leggio GM, Drago F, Salomone S. Epigenetic drugs for Alzheimer's disease: hopes and challenges. Br. J. Clin. Pharmacol. 2013; 75(4):1154-1155.

Cacabelos R.The application of functional genomics to Alzheimer’s disease. Pharmacogenomics 2003; 4(5): 597-621.

Cacabelos R. Molecular pathology and pharmacogenomics in Alzheimer’s disease: Polygenic-related effects of multifactorial treatments on cognition, anxiety, and depression. Meth. Find. Exper. Clin. Pharmacol 2007; 29(Supp.A):1-91.

Cacabelos R. Pharmacogenomics and therapeutic strategies for dementia. Expert Rev. Mol. Diag 2009; 9(6):567-611.

Wang J, Zhao Z, Lin E, Zhao W, Qian X, et al. Unintended effects of cardiovascular drugs on the pathogenesis of Alzheimer's disease. PLoS One 2013; 8(6):e65232. doi: 10.1371/journal.pone.0065232.

Montastruc F, Gardette V, Cantet C, Piau A, Lapeyre-Mestre M, et al. Potentially inappropriate medication use among patients with Alzheimer disease in the REAL.FR cohort: be aware of atropinic and benzodiazepine drugs! Eur J Clin Pharmacol 2013; 69(8):1589-1597.

Haibin L, Lirong W, Mingliang L, Rongrong P, Peibo L, et al. AlzPlatform: an Alzheimer's disease domain-specific chemogenomics knowledgebase for polypharmacology and target identification research. J Chem Inf Model 2014; 54(4):1050-1060.

Jeffrey L, Cummings JL, Morstorf T, Zhong K. Alzheimer’s disease drug-development pipeline: few candidates, frequent failures. Alzheimers Res. Ther 2014; 6(4):37.

Bond M, Rogers G, Peters J, Anderson R, Hoyle M, et al. The effectiveness and cost-effectiveness of donepezil, galantamine, rivastigmine and memantine for the treatment of Alzheimer's disease (review of Technology Appraisal No. 111): a systematic review and economic model. Health Technol Assess 2012; 16(21):1-470.

Cacabelos R, Alvarez A, Lombardi V, Fernández-Novoa L, Corzo L, Pérez P, et al. Pharmacological treatment of Alzheimer disease: From psychotropic drugs and cholinesterase inhibitors to pharmacogenomics. Drugs Today (Barc.) 2000; 36(7):415-499.

Cacabelos R. Pharmacogenomics in Alzheimer’s disease. Min. Rev. Medic. Chem 2002; 2(1):59-84.

Cacabelos R, Llovo R, Fraile C, Fernández-Novoa L. Pharmacogenetic aspects of therapy with cholinesterase inhibitors: The role of CYP2D6 in Alzheimer’s disease pharmacogenetics. Cur. Alzheimer Res 2007; 4(4):479-500.

Cacabelos R, Fernández-Novoa L, Lombardi V, Kubota Y, Takeda M. Molecular genetics of Alzheimer’s disease and aging. Meth. Find. Exp. Clin. Pharmacol 2005; 27(Suppl. A):1-573.

Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE. Systematic meta-analyses of Alzheimer disease genetic association studies: The AlzGene database. Nat Genet 2007; 39(1):17-23.

Karch CM, Cruchaga C, Goate A. Alzheimer’s disease genetics: from the bench to the clinic. Neuron 2014; 83(1):11-26.

Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science 2002; 297(5580):353-356.

Hooli BV, Kovacs-Vajna ZM, Mullin K, Blumenthal MA, Mattheisen M, et al. Rare autosomal copy number variations in early-onset familial Alzheimer's disease. Mol Psychiatry 2014; 19(6):676-681.

Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, et al. Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 1999;400(6740):173-177.

Carrera I, Etcheverría I, Fernández-Novoa L, Lombardi V, Cacabelos R, Vigo C. Vaccine Development to Treat Alzheimer’s Disease Neuropathology in APP/PS1 Transgenic Mice. Int. J. Alzheimers Dis. 2012:376138.

Cacabelos R, Fernández-Novoa L, Martínez-Bouza R, McKay A, Carril JC, et al. Future trends in the pharmacogenomics of brain disorders and dementia: Influence of APOE and CYP2D6 variants. Pharmaceuticals 2010; 3(10):3040-3100.

Cacabelos R. Pharmacogenomics of central nervous system (CNS) drugs. Drug Dev. Res. 2012; 73(8):461-476.

Roses AD. Pharmacogenetics and drug development: the path to safer and more effective drugs. Nat Rev Genet. 2004; 5(9):645-656.

Roses AD, Saunders AM, Huang Y, Strum J, Weisgraber KH, et al. Complex disease-associated pharmacogenetics: Drug efficacy, drug safety, and confirmation of a pathogenic hypothesis (Alzheimer’s disease). Pharmacogenomics J. 2007; 7(1):10-28.

Risner M, Saunders A, Altman J, Ormandy G, Craft S, et al. Efficacy of rosiglitazone in a genetically defined population with mild-to-moderate Alzheimer’s disease. Pharmacogenomics J. 2006; 6(4):246-254.

Takei N, Miyashita A, Tsukie T, Arai H, Asada T, et al. Genetic association study on in and around the APOE in late-onset Alzheimer disease in Japanese. Genomics. 2009; 93(5):441-448.

Potkin SG, Guffanti G, Lakatos A, Turner JA, Kruggel F, et al. Hippocampal atrophy as a quantitative trait in a genome-wide association study identifying novel susceptibility genes for Alzheimer’s disease. PLoS One. 2009; 4(8):e6501.

Roses AD. An inherited variable poly-T repeat genotype in TOMM40 in Alzheimer disease. Arch. Neurol. 2010; 67(5):536-541.

Roses AD, Lutz MW, Amrine-Madsen H, Saunders AM, Crenshaw DG, et al. A TOMM40 variable-length polymorphism predicts the age of late-onset Alzheimer’s disease. Pharmacogenomics J. 2010; 10(5):375-384.

Roses AD, Saunders AM, Lutz MW, Zhang N, Hariri AR, et al. New applications of disease genetics and pharmacogenetics to drug development. Curr. Opin. Pharmacol. 2014; 14:81-89.

Roses AD, Lutz MW, Crenshaw DG, Grossman I, Saunders AM, et al. TOMM40 and APOE: Requirements for replication studies of association with age of disease onset and enrichment of a clinical trial. Alzheimers Dement. 2013; 9(2):132-136.

Lutz MW, Crenshaw DG, Saunders AM, Roses AD. Genetic variation at a single locus and age of onset for Alzheimer’s disease. Alzheimers Dement. 2010; 6(2):125-131.

Linnertz C, Saunders AM, Lutz MW, Crenshaw DM, Grossman I, et al. Characterization of the poly-T variant in the TOMM40 gene in diverse populations. PLoS One. 2012; 7(2):e30994.

Bagnoli S, Piaceri I, Tedde A, Bessi V, Bracco L, et al. TOMM40 polymorphisms in Italian Alzheimer’s disease and frontotemporal dementia patients. Neurol. Sci. 2013; 34(6):995-998.

Ma XY, Yu JT, Wang W, Wang HF, Liu QY, et al. Association of TOMM40 polymorphisms with late-onset Alzheimer’s disease in a Northern Han Chinese population. Neuromolecular Med. 2013; 15(2): 279-287.

Linnertz C, Anderson L, Gottschalk W, Crenshaw D, Lutz MW, et al. The cis-regulatory effect of an Alzheimer’s disease-associated poly-T locus on expression of TOMM40 and apolipoprotein E genes. Alzheimers Dement. 2014; 10(5):541-551.

Yoon H, Myung W, Lim SW, Kang HS, Kim S, et al. Association of the choline acetyltransferase gene with responsiveness to acetylcholinesterase inhibitors in Alzheimer's disease. Pharmacopsychiatry. 2015; 48(3):111-117.

Braga IL, Silva PN, Furuya TK, Santos LC, Pires BC, et al. Effect of APOE and CHRNA7 genotypes on the cognitive response to cholinesterase inhibitor treatment at different stages of Alzheimer's disease. Am. J. Alzheimers Dis. Other Demen. 2015; 30(2):139-144.

Xie HG, Kim RB, Wood AJ, Stein CM. Molecular basis of ethnic differences in drug disposition and response. Annu. Rev. Pharm. Toxicol. 2001; (41):815-850.

Cacabelos R. Pharmacogenomics and therapeutic prospects in Alzheimer's disease. Expert Opin. Pharmacother. 2005; 6(12):1967-1987.

Cacabelos, R. Donepezil in Alzheimer’s disease: From conventional trials to pharmacogenetics. Neuropsychiat. Dis. Treat. 2007; 3(3):303-333.

Jann MW, Shirley KL, Small GW. Clinical pharmacokinetics and pharmacodynamics of cholinesterase inhibitors. Clin. Pharmacokinet. 2002; 41(10):719-739.

Noetzli M, Eap CB. Pharmacodynamic, pharmacokinetic and pharmacogenetic aspects of drugs used in the treatment of Alzheimer's Disease. Clin. Pharmacokinet. 2013; 52(4):225-241.

Pilotto A, Franceschi M, D'Onofrio G, Bizzarro A, Mangialasche F, et al. Effect of a CYP2D6 polymorphism on the efficacy of donepezil in patients with Alzheimer disease. Neurology. 2009; 73(10):761-767.

Albani D, Martinelli Boneschi F, Biella G, Giacalone G, Lupoli S, et al. Replication study to confirm the role of CYP2D6 polymorphism rs1080985 on donepezil efficacy in Alzheimer's disease patients. J. Alzheimers Dis. 2012; 30(4):745-749.

Seripa D, Bizzarro A, Pilotto A, D'onofrio G, Vecchione G, et al. Role of cytochrome P4502D6 functional polymorphisms in the efficacy of donepezil in patients with Alzheimer's disease. Pharmacogenet. Genomics. 2011; 21(4):225-230.

Zhong Y, Zheng X, Miao Y, Wan L, Yan H, et al. Effect of CYP2D6*10 and APOE polymorphisms on the efficacy of donepezil in patients with Alzheimer's disease. Am. J. Med. Sci. 2013; 345(3):222-226.

Varsaldi F, Miglio G, Scordo MG, Dahl ML, Villa LM, et al. Impact of the CYP2D6 polymorphism on steady-state plasma concentrations and clinical outcome of donepezil in Alzheimer's disease patients. Eur. J. Clin. Pharmacol. 2006; 62(9):721-726.

Chianella C, Gragnaniello D, Maisano Delser P, Visentini MF, Sette E, et al. BCHE and CYP2D6 genetic variation in Alzheimer's disease patients treated with cholinesterase inhibitors. Eur. J. Clin. Pharmacol. 2011; 67(11):1147-1157.

Mannheimer B, Wettermark B, Lundberg M, Pettersson H, von Bahr C,et al. Nationwide drug-dispensing data reveal important differences in adherence to drug label recommendations on CYP2D6-dependent drug interactions. Br. J. Clin. Pharmacol. 2010; 69(4): 411-417.

Magliulo L, Dahl ML, Lombardi G, Fallarini S, Villa LM, et al. Do CYP3A and ABCB1 genotypes influence the plasma concentration and clinical outcome of donepezil treatment?. Eur. J. Clin. Pharmacol. 2011; 67(1):47-54.

Miranda LF, Gomes KB, Silveira JN, Pianetti GA, Byrro RM, et al. Predictive factors of clinical response to cholinesterase inhibitors in mild and moderate Alzheimer's disease and mixed dementia: a one-year naturalistic study. J. Alzheimers Dis. 2015; 45(2):609-620.

Lilienfeld S. Galantamine-a novel cholinergic drug with a unique dual mode of action for the treatment of patients with Alzheimer's disease. CNS Drug Rev. 2002; 8(2), 159-176.

Farlow MR. Clinical pharmacokinetics of galantamine. Clin. Pharmacokinet. 2003; 42(15): 1383-1392.

Zhao Q, Brett M, Van Osselaer N, Huang F, Raoult A, et al. Galantamine pharmacokinetics, safety, and tolerability profiles are similar in healthy Caucasian and Japanese subjects. J. Clin. Pharmacol. 2002; 42(9):1002-1010.

Mannens GS, Snel CA, Hendrickx J, Verhaeghe T, Le Jeune L, et al. The metabolism and excretion of galantamine in rats, dogs, and humans. Drug Metab. Dispos. 2002;30(5):553-563.

Noetzli M, Guidi M, Ebbing K, Eyer S, Zumbach S, et al. Relationship of CYP2D6, CYP3A, POR, and ABCB1 genotypes with galantamine plasma concentrations. Ther. Drug Monit. 2013; 35(2):270-275.

Clarke JA, Cutler M, Gong I, Schwarz UI, Freeman D, et al. Cytochrome P450 2D6 phenotyping in an elderly population with dementia and response to galantamine in dementia: A pilot study. Am. J. Geriatr. Pharmacother. 2011; 9(4):224-233.

Bentué-Ferrer D, Tribut O, Polard E, Allain H. Clinically significant drug interactions with cholinesterase inhibitors: A guide for neurologists. CNS Drugs. 2003; 17(13):947-963.

Huang F, Fu Y. A review of clinical pharmacokinetics and pharmacodynamics of galantamine, a reversible acetylcholinesterase inhibitor for the treatment of Alzheimer's disease, in healthy subjects and patients. Curr. Clin. Pharmacol. 2010; 5(2):115-124.

Zhai XJ, Lu YN. Food-drug interactions: Effect of capsaicin on the pharmacokinetics of galantamine in rats. Xenobiotica. 2012; 42(11):1151-1155.

Polinsky RJ. Clinical pharmacology of rivastigmine: a new-generation acetylcholinesterase inhibitor for the treatment of Alzheimer's disease. Clin. Ther. 1998; 20(4):634-647.

Sonali N, Tripathi M, Sagar R, Velpandian T, Subbiah V. Clinical effectiveness of rivastigmine monotherapy and combination therapy in Alzheimer's patients. CNS Neurosci. Ther. 2013; 19(2):91-97.

Lupp A, Appenroth D, Fang L, Decker M, Lehmann J, et al. Tacrine-NO donor and tacrine-ferulic acid hybrid molecules as new anti-Alzheimer agents: Hepatotoxicity and influence on the cytochrome P450 system in comparison to tacrine. Arzneimittelforschung. 2010; 60(5):229-237.

Alfirevic A, Mills T, Carr D, Barratt BJ, Jawaid A, et al. Tacrine-induced liver damage: An analysis of 19 candidate genes. Pharmacogenet. Genomics 2007; 17(12):1091-1100.

Yang Z, Zhou X, Zhang Q. Effectiveness and safety of memantine treatment for Alzheimer's disease. J. Alzheimers Dis. 2013; 36(3):445-458.

Micuda S, Mundlova L, Anzenbacherova E, Anzenbacher P, Chladek J, et al. Inhibitory effects of memantine on human cytochrome P450 activities: Prediction of in vivo drug interactions. Eur. J. Clin. Pharmacol. 2004; 60(8):583-589.

Noetzli M, Guidi M, Ebbing K, Eyer S, Wilhelm L, et al. Population pharmacokinetic study of memantine: Effects of clinical and genetic factors. Clin. Pharmacokinet. 2013; 52(3):211-223.

Marquez B, Van Bambeke F. ABC multidrug transporters: Target for modulation of drug pharmacokinetics and drug-drug interactions. Curr. Drug Targets. 2011; 12(5):600-620.

Haufroid V. Genetic polymorphisms of ATP-binding cassette transporters ABCB1 and ABCC2 and their impact on drug disposition. Curr. Drug Targets. 2011; 12(5):631-646.

Cacabelos R, López-Muñoz F. The ABCB1 transporter in Alzheimer’s disease. Clin. Exp. Pharmacol. 2014;(4):e128.

Li G, Gu HM, Zhang DW. ATP-binding cassette transporters and cholesterol translocation. IUBMB Life. 2013; 65(6):505-512.

van Assema DM, Lubberink M, Rizzu P, van Swieten JC, Schuit RC, et al. Blood-brain barrier P-glycoprotein function in healthy subjects and Alzheimer's disease patients: Effect of polymorphisms in the ABCB1 gene. EJNMMI Res. 2012;2(1):57.

Chen KD, Chang PT, Ping YH, Lee HC, Yeh CW, et al. Gene expression profiling of peripheral blood leukocytes identifies and validates ABCB1 as a novel biomarker for Alzheimer's disease. Neurobiol. Dis. 2011; 43(3):698-705.

Elali A, Rivest S. The role of ABCB1 and ABCA1 in beta-amyloid clearance at the neurovascular unit in Alzheimer's disease. Front. Physiol. 2013; (4):45.

Cascorbi I, Flüh C, Remmler C, Haenisch S, Faltraco F, et al. Association of ATP-binding cassette transporter variants with the risk of Alzheimer's disease. Pharmacogenomics. 2013; 14(5):485-494.

Reitz C, Jun G, Naj A, Rajbhandary R, Vardarajan BN, et al. Variants in the ATP-binding cassette transporter (ABCA7), apolipoprotein E ϵ4, and the risk of late-onset Alzheimer disease in African Americans. JAMA 2013; 309(14):1483-1492.

Fehér Á, Juhász A, László A, Pákáski M, Kálmán J, et al. Association between the ABCG2 C421A polymorphism and Alzheimer's disease. Neurosci. Lett. 2013; 550:51-54.

Cacabelos R. The metabolomic paradigm of pharmacogenomics in complex disorders. Metabolomics. 2012;(2):e119. doi:10.4172/2153-0769.1000e119.

Hosoya K, Tachikawa M. Roles of organic anion/cation transporters at the blood-brain and blood-cerebrospinal fluid barriers involving uremic toxins. Clin Exp. Nephrol. 2011; 15(4):478-485.

Carl SM, Lindley DJ, Das D, Couraud PO, Weksler BB, et al. ABC and SLC transporter expression and Pot substrate characterization across the human CMEC/D3 blood-brain barrier cell line. Mol. Pharm. 2010; 7(4):1057-1068.

Miller DB, O’Callaghan JP. Biomarkers of Parkinson’s disease: Present and future. Metabolism, 2015; 64:S40-S46. doi:10.1016/j.metabol.2014.10.030.

Naughton C, O'Toole D, Kirik D, Dowd E. Interaction between subclinical doses of the Parkinson's disease associated gene, α-synuclein, and the pesticide, rotenone, precipitates motor dysfunction and nigrostriatal neurodegeneration in rats. Behav Brain Res. 2016; S0166-4328, 30574-5. doi: 10.1016/j.bbr.2016.08.056.

Ritz, B.R.; Paul, K.C.; Bronstein, J.M. Of Pesticides and Men: a California Story of Genes and Environment in Parkinson's Disease. Curr Environ Health Rep. 2016, 3, 40-52. doi: 10.1007/s40572-016-0083-2.

Rokad D, Ghaisas S, Harischandra DS, Jin H, Anantharam V, Kanthasamy A, et al. Role of Neurotoxicants and Traumatic Brain Injury in α-Synuclein Protein Misfolding and Aggregation. Brain Res Bull. 2016; pii: S0361-9230(16)30467-1. doi: 10.1016/j.brainresbull.2016.12.003.

Cacabelos R, Carrera I, Fernández-Novoa L., Alejo R, Corzo L., Rodríguez S, et al. Parkinson’s Disease: New solutions to old problems. EuroEspes J (Gen-T), 2017; 11:74-96.

Cacabelos R. Parkinson’s disease: From pathogenesis to pharmacogenomics. Int J Mol Sci 2017; 18:551. Doi:10.3390/ijms18030551.

Toledo JB, Arnold SE, Raible K, Brettschneider J, Xie SX, Grossman M, et al. Contribution of cerebrovascular disease in autopsy confirmed neurodegenerative disease cases in the National Alzheimer's Coordinating Centre. Brain. 2013;136(Pt 9): 2697-706. doi: 10.1093/brain/awt188.

Irwin DJ, Grossman M, Weintraub D, Hurtig HI, Duda JE, Xie SX, et al. Neuropathological and genetic correlates of survival and dementia onset in synucleinopathies: a retrospective analysis. Lancet Neurol. 2017; 16:55-65. doi: 10.1016/S1474-4422(16)30291-5.

Wen KX, Miliç J, El-Khodor B, Dhana K, Nano J, Pulido T, et al. The Role of DNA Methylation and Histone Modifications in Neurodegenerative Diseases: A Systematic Review. PLoS One. 2016; 11:e0167201. doi: 10.1371/journal.pone.0167201. eCollection 2016.

Zhang M, Mu H, Shang Z, Kang K, Lv H, Duan L, et al. Genome-wide pathway-based association analysis identifies risk pathways associated with Parkinson's disease. Neuroscience. 2017; 340:398-410. doi: 10.1016/j.neuroscience.2016.11.004.

Lill CM. Genetics of Parkinson's disease. Mol Cell Probes. 2016; 30:386-396. doi: 10.1016/j.mcp.2016.11.001.

Xie Y, Feng H, Peng S, Xiao J, Zhang J. Association of plasma homocysteine, vitamin B12 and folate levels with cognitive function in Parkinson's disease: A meta-analysis. Neurosci Lett. 2017; 636:190-195. doi: 10.1016/j.neulet.2016.11.007.

Olanow CW, Brundin P. Parkinson's disease and alpha synuclein: is Parkinson's disease a prion-like disorder? Mov Disord. 2013; 28:31-40. doi: 10.1002/mds.25373.

Scheffold A, Holtman IR, Dieni S, Brouwer N, Katz SF, Jebaraj BM, et al. Telomere shortening leads to an acceleration of synucleinopathy and impaired microglia response in a genetic mouse model. Acta Neuropathol Commun. 2016; 4:87. doi: 10.1186/s40478-016-0364-x.

Olszewska DA, Fearon C, Lynch T. Novel gene (TMEM230) linked to Parkinson's disease. J Clin Mov Disord. 2016; 3:17. eCollection 2016.

Nuytemans K, Theuns J, Cruts M, Van Broeckhoven C. Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: a mutation update. Hum Mutat, 2010; 31:763-380.

Lardenoije R, Iatrou A, Kenis G, Kompotis K, Steinbusch HW, Mastroeni D, et al. The epigenetics of aging and neurodegeneration. Prog Neurobiol, 2015;131:21–64.

Coppedè, F. Genetics and epigenetics of Parkinson’s disease. Scientific World J, 2012; 489830. doi: 10.1100/2012/489830.

Hernandez DG, Reed X, Singleton AB. Genetics in Parkinson’s disease: Mendelian versus non-Mendelian inheritance. J Neurochem, 2016; doi: 10/1111/jnc. 13593.

Hill-Burns EM, Ross OA, Wissemann WT, Soto-Ortolaza AI, Zareparsi S, Siuda J, et al. Identification of genetic modifiers of age-at-onset for familial Parkinson's disease. Hum Mol Genet. 2016; pii: ddw206.

Chen Y, Xu R. Phenome-based gene discovery provides information about Parkinson's disease drug targets. BMC Genomics. 2016; 17 Suppl 5:493. doi: 10.1186/s12864-016-2820-1.

Sandor C, Honti F, Haerty W, Szewczyk-Krolikowski K, Tomlinson P, Evetts S, et al. Whole-exome sequencing of 228 patients with sporadic Parkinson's disease. Sci Rep. 2017; 7:41188. doi: 10.1038/srep41188.

Verstraeten A, Theuns J, Van Broeckhoven C. Progress in unraveling the genetic etiology of Parkinson disease in a genomic era. Trends Genet 2015; 31:140–149, doi: (2015).10.1016/j.tig.2015.01.004

Lill CM, Roehr JT, McQueen MB, Kavvoura FK, Bagade S, Schjeide BM, et al. Comprehensive research synopsis and systematic meta-analyses in Parkinson's disease genetics: The PDGene database. PLoS Genet. 2012; 8:e1002548. doi: 10.1371/journal.pgen.1002548.

Do CB, Tung JY, Dorfman E, Kiefer AK, Drabant EM, Francke U, et al. Web-based genome-wide association study identifies two novel loci and a substantial genetic component for Parkinson's disease. PLoS Genet. 2011; 7:e1002141. doi: 10.1371/journal.pgen.1002141.

International Parkinson Disease Genomics Consortium. Imputation of sequence variants for identification of genetic risks for Parkinson's disease: a meta-analysis of genome-wide association studies. Lancet. 2011; 377(9766):641-649. doi: 10.1016/S0140-6736(10)62345-8.

Edwards TL, Scott WK, Almonte C, Burt A, Powell EH, Beecham GW, et al. Genome-wide association study confirms SNPs in SNCA and the MAPT region as common risk factors for Parkinson disease. Ann Hum Genet. 2010; 74:97-109. doi: 10.1111/j.1469-1809.2009.00560.x.

Pankratz N, Wilk JB, Latourelle JC, DeStefano AL, Halter C, Pugh EW, et al. Genomewide association study for susceptibility genes contributing to familial Parkinson disease. Hum Genet. 2009; 124:593-605. doi: 10.1007/s00439-008-0582-9.

Pankratz N, Beecham GW, DeStefano AL, Dawson TM, Doheny KF, Factor SA, et al. Meta-analysis of Parkinson's disease: identification of a novel locus, RIT2. Ann Neurol. 2012; 71:370-84. doi: 10.1002/ana.22687.

Simón-Sánchez J, van Hilten JJ, van de Warrenburg B, Post B, Berendse HW, Arepalli S, et al. Genome-wide association study confirms extant PD risk loci among the Dutch. Eur J Hum Genet. 2011; 19:655-661. doi: 10.1038/ejhg.2010.254.

Liu X, Cheng R, Verbitsky M, Kisselev S, Browne A, Mejia-Sanatana H, et al. Genome-wide association study identifies candidate genes for Parkinson's disease in an Ashkenazi Jewish population. BMC Med Genet. 2011; 12:104. doi: 10.1186/1471-2350-12-104.

Hernandez DG, Nalls MA, Ylikotila P, Keller M, Hardy JA, Majamaa K, et al. Genome wide assessment of young onset Parkinson's disease from Finland. PLoS One. 2012; 7, e41859. doi: 10.1371/journal.pone.0041859.

Foo JN, Tan LC, Irwan ID, Au WL, Low HQ, Prakash KM, et al. Genome-wide association study of Parkinson's disease in East Asians. Hum Mol Genet. 2016; pii: ddw379. doi: 10.1093/hmg/ddw379.

Zhang M, Mu H, Shang Z, Kang K, Lv H, Duan L, et al. Genome-wide pathway-based association analysis identifies risk pathways associated with Parkinson's disease. Neuroscience. 2017; 340:398-410. doi: 10.1016/j.neuroscience.2016.11.004.

Nalls MA, Pankratz N, Lill CM, Do CB, Hernandez DG, Saad M, et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease. Nat Genet. 2014; 46:989-93. doi: 10.1038/ng.3043. Epub 2014 Jul 27.

Cen L, Xiao Y, Wei L, Mo M, Chen X, Li S, et al. Association of DYRK1A polymorphisms with sporadic Parkinson's disease in Chinese Han population. Neurosci Lett. 2016; 632:39-43. doi: 10.1016/j.neulet.2016.08.022.

Funayama M, Ohe K, Amo T, Furuya N, Yamaguchi J, Saiki S, et al. CHCHD2 mutations in autosomal dominant late-onset Parkinson's disease: a genome-wide linkage and sequencing study. Lancet Neurol. 2015; 14:274-82. doi: 10.1016/S1474-4422(14)70266-2.

Mohan M, Mellick GD. Role of the VPS35 D620N mutation in Parkinson's disease. Parkinsonism Relat Disord. 2016; pii: S1353-8020(16)30469-2. doi: 10.1016/j.parkreldis.2016.12.001.

Shi CH, Zhang SY, Yang ZH, Yang J, Shang DD, Mao CY, et al. A novel RAB39B gene mutation in X-linked juvenile parkinsonism with basal ganglia calcification. Mov Disord. 2016; 31:1905-1909. doi: 10.1002/mds.26828.

Deng HX, Shi Y, Yang Y, Ahmeti KB, Miller N, Huang C, et al. Identification of TMEM230 mutations in familial Parkinson’s disease. Nat Genet. 2016; 48:733–739. doi: 10.1038/ng.3589.

Cheng L, Wang L, Li NN, Yu WJ, Sun XY, Li JY, et al. SNCA rs356182 variant increases risk of sporadic Parkinson's disease in ethnic Chinese. J Neurol Sci. 2016; 368: 231-234. doi: 10.1016/j.jns.2016.07.032.

Oertel W, Schulz JB. Current and experimental treatments of Parkinson disease: A guide for neuroscientists. J Neurochem. 2016; doi: 10.1111/jnc.13750.

Katzenschlager R, Lees AJ. Treatment of Parkinson's disease: levodopa as the first choice. J Neurol. 2002; 249 Suppl 2:19-24.

Cacabelos R. Parkinson’s disease: Old concepts and new challenges. Scientific Pages Alzheimers Dis Dement, 2016; 1:001.

Pahwa R, Lyons KE. Levodopa-related wearing-off in Parkinson's disease: identification and management. Curr Med Res Opin. 2009; 25(4):841-9. doi: 10.1185/03007990902779319.

Bhidayasiri R, Hattori N, Jeon B, Chen RS, Lee MK, Bajwa JA, et al. Asian perspectives on the recognition and management of levodopa 'wearing-off' in Parkinson's disease. Expert Rev Neurother. 2015; 15:1285-1297. doi: 10.1586/14737175.2015.1088783.

Haaxma CA, Horstink MW, Zijlmans JC, Lemmens WA, Bloem BR, Borm GF. Risk of disabling response fluctuations and dyskinesias for dopamine agonists versus Levodopa in Parkinson's disease. J Parkinsons Dis. 2015; 5:847-853. doi: 10.3233/JPD-150532.

Rascol O, Perez-Lloret S, Ferreira JJ. New treatments for levodopa-induced motor complications. Mov Disord. 2015; 30:1451-1460. doi: 10.1002/mds.26362.

Stowe R, Ives N, Clarke CE, Deane K, van Hilten J, Wheatley K, et al. Evaluation of the efficacy and safety of adjuvant treatment to levodopa therapy in Parkinson s disease patients with motor complications. Cochrane Database Syst Rev, 2010; 7: CD007166. doi: 10.1002/14651858.CD007166.pub2.

Lertxundi U, Isla A, Solinis MA, Domingo-Echaburu S, Hernandez R, Peral-Aguirregoitia J, et al. Anticholinergic burden in Parkinson's disease inpatients. Eur J Clin Pharmacol. 2015; 71:1271-1277. doi: 10.1007/s00228-015-1919-7.

Owolabi LF, Samaila AA, Sunmonu T. Gastrointestinal complications in newly diagnosed Parkinson's disease: A case-control study. Trop Gastroenterol, 2014; 35: 227-231.

Knudsen K, Krogh K, Østergaard K, Borghammer P. Constipation in parkinson's disease: Subjective symptoms, objective markers, and new perspectives. Mov Disord. 2016, doi: 10.1002/mds.26866.

Tran T, Brophy JM, Suissa S, Renoux C. Risks of Cardiac Valve Regurgitation and Heart Failure Associated with Ergot- and Non-Ergot-Derived Dopamine Agonist Use in Patients with Parkinson's Disease: A Systematic Review of Observational Studies. CNS Drugs. 2015; 29:985-998. doi: 10.1007/s40263-015-0293-4.

Suzuki M, Nakamura T, Hirayama M, Ueda M, Katsuno M, Sobue G. Cardiac parasympathetic dysfunction in the early phase of Parkinson's disease. J Neurol. 2016.

Barone P, Santangelo G, Amboni M, Pellecchia MT, Vitale C. Pisa syndrome in Parkinson's disease and parkinsonism: clinical features, pathophysiology, and treatment. Lancet Neurol. 2016; 15:1063-1074. doi: 10.1016/S1474-4422(16)30173-9.

Cacabelos R, Fernández-Novoa L, Alejo R, Corzo L, Alcaraz M, Nebril L, et al. E-PodoFavalin-15999 (Atremorine®)-induced dopamine response in Parkinson’s Disease: Pharmacogenetics-related effects. J Genomic Med Pharmacogenomics 2016; 1:1-26.

Altmann V, Schumacher-Schuh AF, Rieck M, Callegari-Jacques SM, Rieder CR, Hutz MH. Influence of genetic, biological and pharmacological factors on levodopa dose in Parkinson's disease. Pharmacogenomics. 2016; 17:481-488. doi: 10.2217/pgs.15.183.

Jiménez-Jiménez FJ, Alonso-Navarro H, García-Martín E, Agúndez JA. Advances in understanding genomic markers and pharmacogenetics of Parkinson's disease. Expert Opin Drug Metab Toxicol. 2016; 12:433-448. doi: 10.1517/17425255.2016.1158250.

Kurzawski M, Białecka M, Droździk M. Pharmacogenetic considerations in the treatment of Parkinson's disease. Neurodegener Dis Manag. 2015; 5:27-35. doi: 10.2217/nmt.14.38.

Schumacher-Schuh AF, Rieder CR, Hutz MH. Parkinson's disease pharmacogenomics: new findings and perspectives. Pharmacogenomics. 2014; 15: 1253-1271. doi: 10.2217/pgs.14.93.

Rieck M, Schumacher-Schuh AF, Callegari-Jacques SM, Altmann V, Schneider Medeiros M, Hutz MH. Is there a role for ADORA2A polymorphisms in levodopa-induced dyskinesia in Parkinson's disease patients? Pharmacogenomics. 2015; 16:573-582. doi: 10.2217/pgs.15.23.

Schumacher-Schuh AF, Altmann V, Rieck M, Tovo-Rodrigues L, Monte TL, Callegari-Jacques SM, et al. Association of common genetic variants of HOMER1 gene with levodopa adverse effects in Parkinson's disease patients. Pharmacogenomics J. 2014; 14:289-94. doi: 10.1038/tpj.2013.37.

Rieck M, Schumacher-Schuh AF, Altmann V, Francisconi CL, Fagundes PT, Monte TL, et al. DRD2 haplotype is associated with dyskinesia induced by levodopa therapy in Parkinson's disease patients. Pharmacogenomics. 2012; 13:1701-1710. doi: 10.2217/pgs.12.149.

Moreau C, Meguig S, Corvol JC, Labreuche J, Vasseur F, Duhamel A, et al. Polymorphism of the dopamine transporter type 1 gene modifies the treatment response in Parkinson's disease. Brain. 2015; 138(Pt 5):1271-1283. doi: 10.1093/brain/awv063.

Ahmed SS, Husain RS, Kumar S, Ramakrishnan V. Association between MDR1 gene polymorphisms and Parkinson's disease in Asian and Caucasian populations: a meta-analysis. J Neurol Sci. 2016; 368:255-62. doi: 10.1016/j.jns.2016.07.041.

Lohr K-M, Masoud ST, Salahpour A, Miller GW. Membrane transporters as mediators of synaptic dopamine dynamics: implications for disease. Eur J Neurosci. 2016, doi: 10.1111/ejn.13357.

Cacabelos R, Fernández-Novoa L, Alejo R, Corzo L, Rodríguez S, Alcaraz M, et al. E-PodoFavalin-15999 (Atremorine®)-induced neurotransmitter and hormonal response in Parkinson’s Disease. J Expl Res Pharmacol, 2016; 1:1-12.

Carrera I, Fernández-Novoa, L., Sampedro C, Cacabelos R. Neuroprotective effect of Atremorine in an experimental model of Parkinson’s disease. Current Pharmaceutical Design 2017; 23:1-12.

Romero A, Parada E, González-Lafuente L, Farré-Alins V, Ramos E, Cacabelos R, Egea J. Neuroprotective effects of E-PodoFavalin-15999 (Atremorine®). CNS Neurosci Therapeutics 2017; DOI:10.1111/cns.12693.




DOI: http://dx.doi.org/10.18103/imr.v3i6.472

Refbacks

  • There are currently no refbacks.
Copyright 2016. All rights reserved.