Brain PET in the Evaluation of Cognitive Function and Dysfunction

Dylan Emily Kirsch, Kaajal Visnagra, Daniel H.S. Silverman

Abstract


During the past four decades, three dimensional neuroimaging tools have played a prominent role in both the study of normal cognitive processes and the evaluation of disorders affecting cognitive function. Positron Emission Tomography (PET) is capable of detecting biochemical changes in the human brain at early stages of disease, often years prior to detectable structural changes or clinical expression of symptoms. [18F] fluorodeoxyglucose (FDG) is the most commonly imaged radiopharmaceutical in clinical PET studies. Several others are available, especially for use in patients with known or suspected neurodegenerative disease. Recently, the “Default Mode Network” has attracted substantial attention from investigators interested in normal and abnormal neuropsychology, and has been especially amenable to study through analysis of regional covariations of activities measurable with functional Magnetic Resonance (MR) or PET imaging. PET is particularly useful in illuminating neurodegenerative processes occurring in Alzheimer’s Disease, Frontotemporal Dementia, Primary Progressive Aphasia, Parkinson’s Disease, and other causes of cognitive and/or central motor decline. It can also be helpful in evaluation of patients with rarer conditions such as paraneoplastic neurologic syndromes, limbic encephalitis, chronic traumatic encephalopathy, and prion-based diseases.


Keywords


medical, medicine,research,pharmacology

Full Text:

PDF

References


Silverman, D. H., & Alavi, A. (2005). PET imaging in the assessment of normal and impaired cognitive function. Radiologic Clinics of North America, 43(1), 67-77. doi:10.1016/j.rcl.2004.09.012

Brown, R. K., Bohnen, N. I., Wong, K. K., Minoshima, S., & Frey, K. A. (2014). Brain PET in Suspected Dementia: Patterns of Altered FDG Metabolism. RadioGraphics, 34(3), 684-701. doi:10.1148/rg.343135065

Barthel, H., Schroeter, M. L., Hoffmann, K., & Sabri, O. (2015). PET/MR in Dementia and Other Neurodegenerative Diseases. Seminars in Nuclear Medicine, 45(3), 224-233. doi:10.1053/j.semnuclmed.2014.12.003

Shivamurthy, V. K., Tahari, A. K., Marcus, C., & Subramaniam, R. M. (2015). Brain FDG PET and the Diagnosis of Dementia. American Journal of Roentgenology, 204(1). doi:10.2214/ajr.13.12363

Herholz, K., Carter, S. F., & Jones, M. (2007). Positron emission tomography imaging in dementia. The British Journal of Radiology BJR, 80(Special_issue_2). doi:10.1259/bjr/97295129

Frantz, N., & Farley, S. (2015, April 16). New Research Study to Demonstrate Value of PET Scans in Alzheimer's Disease Diagnosis. Retrieved September 20, 2016, from http://www.alz.org/documents_custom/IDEAS_study_news_release_041615.pdf

Passow, S., Specht, K., Adamsen, T. C., Biermann, M., Brekke, N., Craven, A. R., . . . Hugdahl, K. (2015). Default-mode network functional connectivity is closely related to metabolic activity. Human Brain Mapping Hum. Brain Mapp., 36(6), 2027-2038. doi:10.1002/hbm.22753

Mevel, K., Chételat, G., Eustache, F., & Desgranges, B. (2011). The Default Mode Network in Healthy Aging and Alzheimer's Disease. International Journal of Alzheimer's Disease, 2011, 1-9. doi:10.4061/2011/535816

Glisky EL. Changes in Cognitive Function in Human Aging. In: Riddle DR, editor. Brain Aging: Models, Methods, and Mechanisms. Boca Raton (FL): CRC Press/Taylor & Francis; 2007. Chapter 1. Available from:http://www.ncbi.nlm.nih.gov/books/NBK3885/

Lipnicki, D. M., Sachdev, P. S., Crawford, J., Reppermund, S., Kochan, N. A., Trollor, J. N., … Brodaty, H. (2013). Risk Factors for Late-Life Cognitive Decline and Variation with Age and Sex in the Sydney Memory and Ageing Study. PLoS ONE, 8(6), e65841. doi:10.1371/journal.pone.0065841

Dementia. (2016, April). Retrieved September 02, 2016, from http://www.who.int/mediacentre/factsheets/fs362/en/

Storti, L. B., Quintino, D. T., Silva, N. M., Kusumota, L., & Marques, S. (2016). Neuropsychiatric symptoms of the elderly with Alzheimer's disease and the family caregivers' distress. Revista Latino-Americana De Enfermagem Rev. Latino-Am. Enfermagem, 24. doi:10.1590/1518-8345.0580.2751

Leifer, B. P. (2003). Early Diagnosis of Alzheimer's Disease: Clinical and Economic Benefits. Journal of the American Geriatrics Society, 51(5s2). doi:10.1046/j.1532-5415.5153.x

Dubois, B., Padovani, A., Scheltens, P., Rossi, A., & Dell’Agnello, G. (2015). Timely Diagnosis for Alzheimer’s Disease: A Literature Review on Benefits and Challenges. Journal of Alzheimer's Disease JAD, 49(3), 617-631. doi:10.3233/jad-150692

Alzheimer’s Disease Facts and Figures. (2016, March). Retrieved September 02, 2016, from https://www.alz.org/documents_custom/2016-Facts-and-Figures-Fact-Sheet.pdf

Health care costs for dementia found greater than for any other disease | National Institutes of Health (NIH). (2015, October 27). Retrieved September 02, 2016, from https://www.nih.gov/news-events/news-releases/health-care-costs-dementia-found-greater-any-other-disease

Rattinger, G. B., Schwartz, S., Mullins, C. D., Corcoran, C., Zuckerman, I. H., Sanders, C., . . . Tschanz, J. T. (2015). Dementia severity and the longitudinal costs of informal care in the Cache County population. Alzheimer's & Dementia, 11(8), 946-954. doi:10.1016/j.jalz.2014.11.004

Maresova, P., Mohelska, H., Dolejs, J., & Kuca, K. (2015). Socio-economic Aspects of Alzheimer's Disease. CAR Current Alzheimer Research, 12(9), 903-911. doi:10.2174/156720501209151019111448

Jönsson, L., Jönhagen, M. E., Kilander, L., Soininen, H., Hallikainen, M., Waldemar, G., . . . Wimo, A. (2006). Determinants of costs of care for patients with Alzheimer's disease. Int. J. Geriat. Psychiatry International Journal of Geriatric Psychiatry, 21(5), 449-459. doi:10.1002/gps.1489

Torosyan, N., & Silverman, D. H. (2012). Neuronuclear Imaging in the Evaluation of Dementia and Mild Decline in Cognition. Seminars in Nuclear Medicine, 42(6), 415-422. doi:10.1053/j.semnuclmed.2012.06.004

Taipale, H., Purhonen, M., Tolppanen, A., Tanskanen, A., Tiihonen, J., & Hartikainen, S. (2015). Hospital care and drug costs from five years before until two years after the diagnosis of Alzheimers disease in a Finnish nationwide cohort. Scandinavian Journal of Public Health, 44(2), 150-158. doi:10.1177/1403494815614705

Reed, B., Behar-Cohen, F., & Krantic, S. (2016). Seeing early signs of Alzheimer’s Disease through the lens of the eye. CAR Current Alzheimer Research, 13(999), 1-1. doi:10.2174/1567205013666160819131904

Silverman, Dan H.S., ed. PET in the Evaluation of Alzheimer's Disease and Related Disorders. New York, NY: Springer, 2009. Print.

Gaillard, F. (n.d.). Alzheimer disease | Radiology Reference Article | Radiopaedia.org. Retrieved September 08, 2016, from http://radiopaedia.org/articles/alzheimer-disease-1

Frontotemporal Dementia (FTD). (n.d.). Retrieved September 02, 2016, from http://memory.ucsf.edu/ftd/overview/ftd

“Vascular Dementia.” (2015). Retrieved September 08, 2016, from http://www.dementiatoday.com/vascular-dementia/

Ho, M. (n.d.). Dementia with Lewy bodies | Radiology Reference Article | Radiopaedia.org. Retrieved September 08, 2016, from http://radiopaedia.org/articles/dementia-with-lewy-bodies

Gaillard, F. (n.d.). Parkinson disease | Radiology Reference Article | Radiopaedia.org. Retrieved September 08, 2016, from http://radiopaedia.org/articles/parkinson-disease-1

Gaillard, F. (n.d.). Huntington disease | Radiology Reference Article | Radiopaedia.org. Retrieved September 08, 2016, from http://radiopaedia.org/articles/huntington-disease

Matías-Guiu, Jordi A., María Nieves Cabrera-Martín, María Jesús Pérez-Castejón, Teresa Moreno-Ramos, Cristina Rodríguez-Rey, Rocío García-Ramos, Aida Ortega-Candil, Marta Fernandez-Matarrubia, Celia Oreja-Guevara, Jorge Matías-Guiu, and José Luis Carreras. "Visual and Statistical Analysis of 18F-FDG PET in Primary Progressive Aphasia." European Journal of Nuclear Medicine and Molecular Imaging Eur J Nucl Med Mol Imaging 42.6 (2015): 916-27. Web.

Bonner, Michael F., Sharon Ash, and Murray Grossman. "The New Classification of Primary Progressive Aphasia into Semantic, Logopenic, or Nonfluent/Agrammatic Variants." Current Neurology and Neuroscience Reports Curr Neurol Neurosci Rep 10.6 (2010): 484-90. Web.

Duke Medicine News and Communications. (2008, March 18). One in Three People Over 70 Have Memory Impairment. Retrieved September 02, 2016, from http://corporate.dukemedicine.org/news_and_publications/news_office/news/10261

Arlt, S. (2013). Non-Alzheimer’s disease—related memory impairment and dementia. Dialogues in Clinical Neuroscience, 15(4), 465–473.

Sánchez-Catasús CA, Stormezand GN, van Laar PJ, De Deyn PP, Sánchez MA, Dierckx RA. (2016). FDG-PET for Prediction of AD Dementia in Mild Cognitive Impairment. A Review of the State of the Art with Particular Emphasis on the Comparison with Other Neuroimaging modalities (MRI and Perfusion SPECT). Curr Alzheimer Res

Chung, J., Yoo, K., Kim, E., Na, D. L., & Jeong, Y. (2016). Glucose Metabolic Brain Networks in Early-Onset vs. Late-Onset Alzheimer’s Disease. Frontiers in Aging Neuroscience, 8, 159. doi:10.3389/fnagi.2016.00159

Silverman DH, Early diagnosis of Alzheimer's leads to better outcomes, Today's Geriatric Medicine, 2013;www.todaysgeriatricmedicine.com/news/101613_news.shtml ; (accessed 16 September 2016).

Solito, E., & Sastre, M. (2012). Microglia Function in Alzheimer’s Disease.Frontiers in Pharmacology, 3, 14. doi: 10.3389/fphar.2012.00014

Hamelin, L., Lagarde, J., Dorothée, G., Leroy, C., Labit, M., Comley, R. A., . . . Sarazin, M. (2016). Early and protective microglial activation in Alzheimer’s disease: A prospective study using18F-DPA-714 PET imaging. Brain, 139(4), 1252-1264. doi:10.1093/brain/aww017

Walhovd, K., Fjell, A., Amlien, I., Grambaite, R., Stenset, V., Bjørnerud, A., . . . Due-Tønnessen, P. (2009). Multimodal imaging in mild cognitive impairment: Metabolism, morphometry and diffusion of the temporal–parietal memory network. NeuroImage, 45(1), 215-223. doi:10.1016/j.neuroimage.2008.10.053

Amanzio, M., D’Agata, F., Palermo, S., Rubino, E., Zucca, M., Galati, A., . . . Rainero, I. (2016). Neural correlates of reduced awareness in instrumental activities of daily living in frontotemporal dementia. Experimental Gerontology, 83, 158-164. doi:10.1016/j.exger.2016.08.008

Foster, N. L., Heidebrink, J. L., Clark, C. M., Jagust, W. J., Arnold, S. E., Barbas, N. R., . . . Minoshima, S. (2007). FDG-PET improves accuracy in distinguishing frontotemporal dementia and Alzheimer's disease. Brain, 130(10), 2616-2635. doi:10.1093/brain/awm177

Cancer Statistics. (2016, March 14). Retrieved September 02, 2016, from http://www.cancer.gov/about-cancer/understanding/statistics

Wieneke, M. H., & Dienst, E. R. (1995). Neuropsychological assessment of cognitive functioning following chemotherapy for breast cancer. Psycho-Oncology, 4(1), 61-66. doi:10.1002/pon.2960040108

Ganz, P. A., Kwan, L., Castellon, S. A., Oppenheim, A., Bower, J. E., Silverman, D. H., . . . Belin, T. R. (2013). Cognitive Complaints After Breast Cancer Treatments: Examining the Relationship With Neuropsychological Test Performance. JNCI Journal of the National Cancer Institute, 105(11), 791-801. doi:10.1093/jnci/djt073

Silverman, D. H., Dy, C. J., Castellon, S. A., Lai, J., Pio, B. S., Abraham, L., . . . Ganz, P. A. (2006). Altered frontocortical, cerebellar, and basal ganglia activity in adjuvant-treated breast cancer survivors 5–10 years after chemotherapy. Breast Cancer Res Treat Breast Cancer Research and Treatment, 103(3), 303-311. doi:10.1007/s10549-006-9380-z.

Pomykala, K. L., Ganz, P. A., Bower, J. E., Kwan, L., Castellon, S. A., Mallam, S., … Silverman, D. H. S. (2013). The association between pro-inflammatory cytokines, regional cerebral metabolism, and cognitive complaints following adjuvant chemotherapy for breast cancer. Brain Imaging and Behavior, 7(4), 511–523. doi: 10.1007/s11682-013-9243-2

Binder, Jeffrey R., Julie A. Frost, Thomas A. Hammeke, Robert W. Cox, Stephen M. Rao, and Thomas Prieto. (1997) Human Brain Language Areas Identified by Functional Magnetic Resonance Imaging. JNeurosci, 17(1), 353-362.

Cerami, C., Dodich, A., Greco, L., Iannaccone, S., Magnani, G., Marcone, A., . . . Perani, D. (2016). The Role of Single-Subject Brain Metabolic Patterns in the Early Differential Diagnosis of Primary Progressive Aphasias and in Prediction of Progression to Dementia. Journal of Alzheimer's Disease, 1-15. doi:10.3233/jad-160682

Limbic Encephalitis. (n.d.). Retrieved September 7, 2016, from http://www.encephalitis.info/

Voltz, R. (2007). Neuropsychological symptoms in paraneoplastic disorders. Journal of Neurology J Neurol, 254(S2). doi:10.1007/s00415-007-2020-7

Kristensen, S. B., Hess, S., Petersen, H., & Høilund-Carlsen, P. F. (2015). Clinical value of FDG-PET/CT in suspected paraneoplastic syndromes: A retrospective analysis of 137 patients. European Journal of Nuclear Medicine and Molecular Imaging Eur J Nucl Med Mol Imaging, 42(13), 2056-2063. doi:10.1007/s00259-015-3126-2

Vatankulu, B., Aksoy, S. Y., Asa, S., Sager, S., Sayman, H., Halac, M., & Sonmezoglu, K. (2016). Accuracy of FDG-PET/CT and paraneoplastic antibodies in diagnosing cancer in paraneoplastic neurological syndromes. Revista Española De Medicina Nuclear E Imagen Molecular, 35(1), 17-21. doi:10.1016/j.remn.2015.07.001

Hatano, K., Ishiwata, K., & Elsinga, P. (2006). PET Tracers for Imaging of the Dopaminergic System. CMC Current Medicinal Chemistry, 13(18), 2139-2153. doi:10.2174/092986706777935258

Volkow, N. D., Fowler, J. S., Gatley, J., Logan, J., Wang, G., Ding, Y., & Dewey, S. (1996, July). PET Evaluation of the Dopamine System of the Human Brain. The Journal of Nuclear Medicine, 37(7), 1242-1256. doi:37:1242-1256

Wong, D., Wagner, H., Dannals, R., Links, J., Frost, J., Ravert, H., . . . Et, A. (1984).

Antonini, A., & Leenders, K. L. (1993). Dopamine D2 Receptors in Normal Human Brain: Effect of Age Measured by Positron Emission Tomography (PET) and [11C]-Raclopridea. Annals of the New York Academy of Sciences, 695(1), 81-85. doi:10.1111/j.1749-6632.1993.tb23033.x

Dyck, C. H., Seibyl, J. P., Malison, R. T., Laruelle, M., Zoghbi, S. S., Baldwin, R. M., & Innis, R. B. (2002). Age-Related Decline in Dopamine Transporters: Analysis of Striatal Subregions, Nonlinear Effects, and Hemispheric Asymmetries. The American Journal of Geriatric Psychiatry, 10(1), 36-43. doi:10.1097/00019442-200201000-00005

Costa, K. M. (2014). The Effects of Aging on Substantia Nigra Dopamine Neurons. Journal of Neuroscience, 34(46), 15133-15134. doi:10.1523/jneurosci.3739-14.2014

Calabria, F. F., Calabria, E., Gangemi, V., &Cascini, G. L. (2016). Current status and future challenges of brian imaging with 18F-DOPA PET for movement disorders. Hell J Nuc Med, 2016 Jan-Apr;19(1):33-41. doi: 10.1967/s002339910335

Imaging Dementia—Evidence for Amyloid Scanning (IDEAS) Study (IDEAS). (2016, September 30). Retrieved October 03, 2016, from https://clinicaltrials.gov/ct2/show/NCT02420756?term=IDEAS

Rowe, C. C., & Villemagne, V. L. (2013). Brain Amyloid Imaging. Journal of Nuclear Medicine Technology, 41(1), 11-18. doi:10.2967/jnumed.110.076315

Yang, Sarah. "Lifelong Brain-stimulating Habits Linked to Lower Alzheimer’s Protein Levels." Berkeley News. N.p., 2015. Web. 20 Sept. 2016.

Villemagne, V. L., Furumoto, S., Fodero-Tavoletti, M., Harada, R., Mulligan, R. S., Kudo, Y., . . . Okamura, N. (2012). The challenges of tau imaging. Future Neurology, 7(4), 409-421. doi:10.2217/fnl.12.34

Grossman, M. (2010). Biomarkers in frontotemporal lobar degeneration. Current Opinion in Neurology, 23(6), 643-648. doi:10.1097/wco.0b013e32833fd540

Halabi, C., Halabi, A., Dean, D. L., Wang, P., Boxer, A. L., Trojanowski, J. Q., . . . Seeley, W. W. (2013). Patterns of Striatal Degeneration in Frontotemporal Dementia. Alzheimer Disease & Associated Disorders, 27(1), 74-83. doi:10.1097/wad.0b013e31824a7df4




DOI: http://dx.doi.org/10.18103/imr.v3i6.466

Refbacks

  • There are currently no refbacks.
Copyright 2016. All rights reserved.