Membrane phospholipid signaling for the regulation of cytoskeleton in neurons

Kimino Minagawa, Hiroshi Hasegawa

Abstract


Phospholipids are the major component of cellular membrane. They play important roles not only as a structural component of the membrane, but also as signaling mediators of the cell. In addition to the classically known functions of phosphatidylinositol, which is metabolized into different molecular structures with diverse patterns of phosphorylation, as signaling mediators, novel functions of phosphatidylcholine, phosphatidylserine, and sphingomyelin have been clarified in the past decade. Also, dynamic regulation of physical shape of the cellular membrane, which is governed by phospholipid–associating proteins, contribute to the modulation of cellular signaling. In this review article, we summarize the recent advances of our understanding in phospholipid signaling regulating cellular cytoskeletons and their roles in neuronal functions. We will discuss potential usefulness of phospholipid signaling for the drug development of neurological and psychiatric disorders.


Keywords


phospholipids; neuron; cytoskeleton

Full Text:

 Subscribers Only

References


Mason RP, Shoemaker WJ, Shajenko L, Chambers TE and Herbette LG. Evidence for changes in the Alzheimer's disease brain cortical membrane structure mediated by cholesterol. Neurobiol Aging 13:413-9, 1992. Doi:10.1016/0197-4580(92)90116-F.

Nitsch RM, Blusztajn JK, Pittas AG, Slack BE, Growdon JH and Wurtman RJ. Evidence for a membrane defect in Alzheimer disease brain. Proc Natl Acad Sci U S A 89:1671-5, 1992. http://www.pnas.org/content/89/5/1671.long.

Tanaka Y and Ando S. Synaptic aging as revealed by changes in membrane potential and decreased activity of Na+,K(+)-ATPase. Brain Res 506:46-52, 1990. Doi:10.1016/0006-8993(90)91197-O.

Waki H, Kon K, Tanaka Y and Ando S. Facile methods for isolation and determination of gangliosides in a small scale: age-related changes of gangliosides in mouse brain synaptic plasma membranes. Anal Biochem 222:156-62, 1994. doi:10.1006/abio1994.1467.

Wood WG, Strong R, Williamson LS and Wise RW. Changes in lipid composition of cortical synaptosomes from different age groups of mice. Life Sci 35:1947-52, 1984. doi:10.1016/0024-3205(84)90475-2.

Ando S, Tanaka Y, Toyoda nee Ono Y, Kon K and Kawashima S. Turnover of synaptic membranes: age-related changes and modulation by dietary restriction. J Neurosci Res 70:290-7, 2002. doi:10.1002/jnr.10352.

Henty-Ridilla JL, Li J, Blanchoin L and Staiger CJ. Actin dynamics in the cortical array of plant cells. Curr Opin Plant Biol 16:678-87, 2013.

Staiger CJ and Blanchoin L. Actin dynamics: old friends with new stories. Curr Opin Plant Biol 9:554-62, 2006. doi:10.1016/j.pbi.2013.10.012.

Wang Y, Gao J, Guo X, Tong T, Shi X, Li L, Qi M, Cai M, Jiang J, Xu C, Ji H and Wang H. Regulation of EGFR nanocluster formation by ionic protein-lipid interaction. Cell Res 24:959-76, 2014. doi:10.1038/cr.2014.89.

Brugnoli F, Bavelloni A, Benedusi M, Capitani S and Bertagnolo V. PLC-beta2 activity on actin-associated polyphosphoinositides promotes migration of differentiating tumoral myeloid precursors. Cell Signal 19:1701-12, 2007. doi:10.1016/j.cellsig.2007.03.007.

Pei Z, Yang L and Williamson JR. Phospholipase C-gamma 1 binds to actin-cytoskeleton via its C-terminal SH2 domain in vitro. Biochem Biophys Res Commun 228:802-6, 1996. doi:10.1006/bbrc.1996.1735.

van Horck FP, Lavazais E, Eickholt BJ, Moolenaar WH and Divecha N. Essential role of type I(alpha) phosphatidylinositol 4-phosphate 5-kinase in neurite remodeling. Curr Biol 12:241-5, 2002. doi:10.1016/S0960-9822(01)00660-1.

Yamazaki M, Miyazaki H, Watanabe H, Sasaki T, Maehama T, Frohman MA and Kanaho Y. Phosphatidylinositol 4-phosphate 5-kinase is essential for ROCK-mediated neurite remodeling. J Biol Chem 277:17226-30, 2002. DOI:10.1074/jbc.M109795200.

Yamazaki M, Yamauchi Y, Goshima Y and Kanaho Y. Phosphatidylinositol 4-phosphate 5-kinase beta regulates growth cone morphology and semaphorin 3A-triggered growth cone collapse in mouse dorsal root ganglion neurons. Neurosci Lett 547:59-64, 2013. doi:10.1002/dneu.20800.

Unoki T, Matsuda S, Kakegawa W, Van NT, Kohda K, Suzuki A, Funakoshi Y, Hasegawa H, Yuzaki M and Kanaho Y. NMDA receptor-mediated PIP5K activation to produce PI(4,5)P(2) is essential for AMPA receptor endocytosis during LTD. Neuron 73:135-48, 2012. Doi:10.1016/j.neuron.2011.09.034.

Mandal M and Yan Z. Phosphatidylinositol (4,5)-bisphosphate regulation of N-methyl-D-aspartate receptor channels in cortical neurons. Mol Pharmacol 76:1349-59, 2009. Doi:10.1124/mol.109.058701.

D'Souza-Schorey C and Chavrier P. ARF proteins: roles in membrane traffic and beyond. Nat Rev Mol Cell Biol 7:347-58, 2006. doi:10.1038/nrm1910.

Oku Y and Huganir RL. AGAP3 and Arf6 regulate trafficking of AMPA receptors and synaptic plasticity. J Neurosci 33:12586-98, 2013. doi:10.1523/JNEUROSCI.0341-13.2013.

Scholz R, Berberich S, Rathgeber L, Kolleker A, Kohr G and Kornau HC. AMPA receptor signaling through BRAG2 and Arf6 critical for long-term synaptic depression. Neuron 66:768-80, 2010. doi:10.1016/j.neuron.2010.05.003.

Honda A, Nogami M, Yokozeki T, Yamazaki M, Nakamura H, Watanabe H, Kawamoto K, Nakayama K, Morris AJ, Frohman MA and Kanaho Y. Phosphatidylinositol 4-phosphate 5-kinase alpha is a downstream effector of the small G protein ARF6 in membrane ruffle formation. Cell 99:521-32, 1999. Doi:10.1016/S0092-8674(00)81540-8.

Jolles J, Bothmer J, Markerink M and Ravid R. Phosphatidylinositol kinase is reduced in Alzheimer's disease. J Neurochem 58:2326-9, 1992. doi:10.1111/j.1471-4159.1992.tb10981.x.

Zubenko GS, Stiffler JS, Hughes HB and Martinez AJ. Reductions in brain phosphatidylinositol kinase activities in Alzheimer's disease. Biol Psychiatry 45:731-6, 1999. doi:10.1016/S0006-3223(98)00073-0.

Berman DE, Dall'Armi C, Voronov SV, McIntire LB, Zhang H, Moore AZ, Staniszewski A, Arancio O, Kim TW and Di Paolo G. Oligomeric amyloid-beta peptide disrupts phosphatidylinositol-4,5-bisphosphate metabolism. Nat Neurosci 11:547-54, 2008. doi:10.1038/nn.2100.

Chen CL, Wang Y, Sesaki H and Iijima M. Myosin I links PIP3 signaling to remodeling of the actin cytoskeleton in chemotaxis. Sci Signal 5:ra10, 2012. doi:10.1126/scisignal.2002446.

Diefenbach TJ, Latham VM, Yimlamai D, Liu CA, Herman IM and Jay DG. Myosin 1c and myosin IIB serve opposing roles in lamellipodial dynamics of the neuronal growth cone. J Cell Biol 158:1207-17, 2002. doi:10.1083/jcb.200202028.

Sasaki AT, Chun C, Takeda K and Firtel RA. Localized Ras signaling at the leading edge regulates PI3K, cell polarity, and directional cell movement. J Cell Biol 167:505-18, 2004. doi:10.1083/jcb.200406177.

Menager C, Arimura N, Fukata Y and Kaibuchi K. PIP3 is involved in neuronal polarization and axon formation. J Neurochem 89:109-18, 2004. doi:10.1046/j.1471-4159.2004.02302.x.

Kisseleva M, Feng Y, Ward M, Song C, Anderson RA and Longmore GD. The LIM protein Ajuba regulates phosphatidylinositol 4,5-bisphosphate levels in migrating cells through an interaction with and activation of PIPKI alpha. Mol Cell Biol 25:3956-66, 2005. doi:10.1128/MCB.25.10.3956-3966.2005.

Evans JH and Falke JJ. Ca2+ influx is an essential component of the positive-feedback loop that maintains leading-edge structure and activity in macrophages. Proc Natl Acad Sci U S A 104:16176-81, 2007. doi:10.1073/pnas.0707719104.

Thevathasan JV, Tan E, Zheng H, Lin YC, Li Y, Inoue T and Fivaz M. The small GTPase HRas shapes local PI3K signals through positive feedback and regulates persistent membrane extension in migrating fibroblasts. Mol Biol Cell 24:2228-37, 2013. doi:10.1091/mbc.E12-12-0905.

Funderburk SF, Wang QJ and Yue Z. The Beclin 1-VPS34 complex--at the crossroads of autophagy and beyond. Trends Cell Biol 20:355-62, 2010. doi:10.1016/j.tcb.2010.03.002.

Itakura E, Kishi C, Inoue K and Mizushima N. Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol Biol Cell 19:5360-72, 2008. doi:10.1091/mbc.E08-01-0080.

Morel E, Chamoun Z, Lasiecka ZM, Chan RB, Williamson RL, Vetanovetz C, Dall'Armi C, Simoes S, Point Du Jour KS, McCabe BD, Small SA and Di Paolo G. Phosphatidylinositol-3-phosphate regulates sorting and processing of amyloid precursor protein through the endosomal system. Nat Commun 4:2250, 2013. doi:10.1038/ncomms3250.

Pickford F, Masliah E, Britschgi M, Lucin K, Narasimhan R, Jaeger PA, Small S, Spencer B, Rockenstein E, Levine B and Wyss-Coray T. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J Clin Invest 118:2190-9, 2008. doi:10.1172/JCI33585.

Salminen A, Kaarniranta K, Kauppinen A, Ojala J, Haapasalo A, Soininen H and Hiltunen M. Impaired autophagy and APP processing in Alzheimer's disease: The potential role of Beclin 1 interactome. Prog Neurobiol 106-107:33-54, 2013. doi:10.1016/j.pneurobio.2013.06.002.

Zhou X, Wang L, Hasegawa H, Amin P, Han BX, Kaneko S, He Y and Wang F. Deletion of PIK3C3/Vps34 in sensory neurons causes rapid neurodegeneration by disrupting the endosomal but not the autophagic pathway. Proc Natl Acad Sci U S A 107:9424-9, 2010. doi:10.1073/pnas.0914725107.

Carpentier S, N'Kuli F, Grieco G, Van Der Smissen P, Janssens V, Emonard H, Bilanges B, Vanhaesebroeck B, Gaide Chevronnay HP, Pierreux CE, Tyteca D and Courtoy PJ. Class III phosphoinositide 3-kinase/VPS34 and dynamin are critical for apical endocytic recycling. Traffic 14:933-48, 2013. doi:10.1111/tra.12079.

Sasaki J, Kofuji S, Itoh R, Momiyama T, Takayama K, Murakami H, Chida S, Tsuya Y, Takasuga S, Eguchi S, Asanuma K, Horie Y, Miura K, Davies EM, Mitchell C, Yamazaki M, Hirai H, Takenawa T, Suzuki A and Sasaki T. The PtdIns(3,4)P(2) phosphatase INPP4A is a suppressor of excitotoxic neuronal death. Nature 465:497-501, 2010. doi:10.1038/nature09023.

Sbrissa D, Ikonomov OC, Filios C, Delvecchio K and Shisheva A. Functional dissociation between PIKfyve-synthesized PtdIns5P and PtdIns(3,5)P2 by means of the PIKfyve inhibitor YM201636. Am J Physiol Cell Physiol 303:C436-46, 2012. doi:10.1152/ajpcell.00105.2012.

Sbrissa D, Ikonomov OC, Strakova J and Shisheva A. Role for a novel signaling intermediate, phosphatidylinositol 5-phosphate, in insulin-regulated F-actin stress fiber breakdown and GLUT4 translocation. Endocrinology 145:4853-65, 2004. doi:10.1210/en.2004-0489.

Viaud J, Lagarrigue F, Ramel D, Allart S, Chicanne G, Ceccato L, Courilleau D, Xuereb JM, Pertz O, Payrastre B and Gaits-Iacovoni F. Phosphatidylinositol 5-phosphate regulates invasion through binding and activation of Tiam1. Nat Commun 5:4080, 2014. doi:10.1038/ncomms5080.

Pegtel DM, Ellenbroek SI, Mertens AE, van der Kammen RA, de Rooij J and Collard JG. The Par-Tiam1 complex controls persistent migration by stabilizing microtubule-dependent front-rear polarity. Curr Biol 17:1623-34, 2007. doi:10.1016/j.cub.2007.08.035.

Wang S, Watanabe T, Matsuzawa K, Katsumi A, Kakeno M, Matsui T, Ye F, Sato K, Murase K, Sugiyama I, Kimura K, Mizoguchi A, Ginsberg MH, Collard JG and Kaibuchi K. Tiam1 interaction with the PAR complex promotes talin-mediated Rac1 activation during polarized cell migration. J Cell Biol 199:331-45, 2012. doi:10.1083/jcb.201202041.

Osborne SL, Wen PJ, Boucheron C, Nguyen HN, Hayakawa M, Kaizawa H, Parker PJ, Vitale N and Meunier FA. PIKfyve negatively regulates exocytosis in neurosecretory cells. J Biol Chem 283:2804-13, 2008. doi:10.1074/jbc.M704856200.

Seebohm G, Neumann S, Theiss C, Novkovic T, Hill EV, Tavare JM, Lang F, Hollmann M, Manahan-Vaughan D and Strutz-Seebohm N. Identification of a novel signaling pathway and its relevance for GluA1 recycling. PLoS One 7:e33889, 2012. doi:10.1371/journal.pone.0033889.

Martin S, Harper CB, May LM, Coulson EJ, Meunier FA and Osborne SL. Inhibition of PIKfyve by YM-201636 dysregulates autophagy and leads to apoptosis-independent neuronal cell death. PLoS One 8:e60152, 2013. doi:10.1371/journal.pone.0060152.

Ferguson CJ, Lenk GM and Meisler MH. Defective autophagy in neurons and astrocytes from mice deficient in PI(3,5)P2. Hum Mol Genet 18:4868-78, 2009. doi:10.1093/hmg/ddp460.

Oppelt A, Haugsten EM, Zech T, Danielsen HE, Sveen A, Lobert VH, Skotheim RI and Wesche J. PIKfyve, MTMR3 and their product PtdIns5P regulate cancer cell migration and invasion through activation of Rac1. Biochem J 461:383-90, 2014. doi:10.1042/BJ20140132.

Oppelt A, Lobert VH, Haglund K, Mackey AM, Rameh LE, Liestol K, Schink KO, Pedersen NM, Wenzel EM, Haugsten EM, Brech A, Rusten TE, Stenmark H and Wesche J. Production of phosphatidylinositol 5-phosphate via PIKfyve and MTMR3 regulates cell migration. EMBO Rep 14:57-64, 2012. doi:10.1038/embor.2012.183.

Cockcroft S. Phosphatidic acid regulation of phosphatidylinositol 4-phosphate 5-kinases. Biochim Biophys Acta 1791:905-12, 2009. doi:10.1016/j.bbalip.2009.03.007.

Knapek K, Frondorf K, Post J, Short S, Cox D and Gomez-Cambronero J. The molecular basis of phospholipase D2-induced chemotaxis: elucidation of differential pathways in macrophages and fibroblasts. Mol Cell Biol 30:4492-506, 2010. doi:10.1128/MCB.00229-10.

Mahankali M, Peng HJ, Cox D and Gomez-Cambronero J. The mechanism of cell membrane ruffling relies on a phospholipase D2 (PLD2), Grb2 and Rac2 association. Cell Signal 23:1291-8, 2011. doi:10.1016/j.cellsig.2011.03.010.

Chae YC, Kim JH, Kim KL, Kim HW, Lee HY, Heo WD, Meyer T, Suh PG and Ryu SH. Phospholipase D activity regulates integrin-mediated cell spreading and migration by inducing GTP-Rac translocation to the plasma membrane. Mol Biol Cell 19:3111-23, 2008. doi:10.1091/mbc.E07-04-0337.

Itoh T, Hasegawa J, Tsujita K, Kanaho Y and Takenawa T. The tyrosine kinase Fer is a downstream target of the PLD-PA pathway that regulates cell migration. Sci Signal 2:ra52, 2009. doi:10.1126/scisignal.2000393.

Pleskot R, Li J, Zarsky V, Potocky M and Staiger CJ. Regulation of cytoskeletal dynamics by phospholipase D and phosphatidic acid. Trends Plant Sci 18:496-504, 2013. doi:10.1016/j.tplants.2013.04.005.

Kouchi Z, Igarashi T, Shibayama N, Inanobe S, Sakurai K, Yamaguchi H, Fukuda T, Yanagi S, Nakamura Y and Fukami K. Phospholipase Cdelta3 regulates RhoA/Rho kinase signaling and neurite outgrowth. J Biol Chem 286:8459-71, 2010. doi:10.1074/jbc.M110.171223.

Shariff A and Luna EJ. Diacylglycerol-stimulated formation of actin nucleation sites at plasma membranes. Science 256:245-7, 1992. doi:10.1126/science.1373523.

Anjum F, Joshi K, Grinkina N, Gowda S, Cutaia M and Wadgaonkar R. Role of sphingomyelin synthesis in pulmonary endothelial cell cytoskeletal activation and endotoxin-induced lung injury. Am J Respir Cell Mol Biol 47:94-103, 2012. doi:10.1165/rcmb.2010-0458OC.

Ray TK, Skipski VP, Barclay M, Essner E and Archibald FM. Lipid composition of rat liver plasma membranes. J Biol Chem 244:5528-36, 1969. http://www.jbc.org/content/244/20/5528.short.

Takeuchi M and Terayama H. Preparation and chemical composition of rat liver cell membranes. Exp Cell Res 40:32-44, 1965. doi:10.1016/0014-4827(65)90287-9.

Breckenridge WC, Gombos G and Morgan IG. The lipid composition of adult rat brain synaptosomal plasma membranes. Biochim Biophys Acta 266:695-707, 1972. doi:10.1016/0005-2736(72)90365-3.

Cotman C, Blank ML, Moehl A and Snyder F. Lipid composition of synaptic plasma membranes isolated from rat brain by zonal centrifugation. Biochemistry 8:4606-12, 1969. doi:10.1021/bi00839a056.

Clem BF, Clem AL, Yalcin A, Goswami U, Arumugam S, Telang S, Trent JO and Chesney J. A novel small molecule antagonist of choline kinase-alpha that simultaneously suppresses MAPK and PI3K/AKT signaling. Oncogene 30:3370-80, 2011. doi:10.1038/onc.2011.51.

Granata A, Nicoletti R, Tinaglia V, De Cecco L, Pisanu ME, Ricci A, Podo F, Canevari S, Iorio E, Bagnoli M and Mezzanzanica D. Choline kinase-alpha by regulating cell aggressiveness and drug sensitivity is a potential druggable target for ovarian cancer. Br J Cancer 110:330-40, 2014. doi:10.1038/bjc.2013.729.

Shah T, Wildes F, Penet MF, Winnard PT, Jr., Glunde K, Artemov D, Ackerstaff E, Gimi B, Kakkad S, Raman V and Bhujwalla ZM. Choline kinase overexpression increases invasiveness and drug resistance of human breast cancer cells. NMR Biomed 23:633-42, 2010. doi:10.1002/nbm.1510.

Domizi P, Aoyama C and Banchio C. Choline kinase alpha expression during RA-induced neuronal differentiation: role of C/EBPbeta. Biochim Biophys Acta 1841:544-51, 2014. doi:10.1016/j.bbalip.2014.01.007.

Marcucci H, Paoletti L, Jackowski S and Banchio C. Phosphatidylcholine biosynthesis during neuronal differentiation and its role in cell fate determination. J Biol Chem 285:25382-93, 2010. doi:10.1074/jbc.M110.139477.

Paoletti L, Elena C, Domizi P and Banchio C. Role of phosphatidylcholine during neuronal differentiation. IUBMB Life 63:714-20, 2011. doi:10.1002/iub.521.

Buchser WJ, Slepak TI, Gutierrez-Arenas O, Bixby JL and Lemmon VP. Kinase/phosphatase overexpression reveals pathways regulating hippocampal neuron morphology. Mol Syst Biol 6:391, 2010. doi:10.1038/msb.2010.52.

Gilad GM and Gilad VH. Increased choline kinase activity in the rat superior cervical ganglion after axonal injury. Brain Res 220:420-6, 1981. doi:10.1016/0006-8993(81)91236-1.

Carter JM, Demizieux L, Campenot RB, Vance DE and Vance JE. Phosphatidylcholine biosynthesis via CTP:phosphocholine cytidylyltransferase 2 facilitates neurite outgrowth and branching. J Biol Chem 283:202-12, 2008. doi:10.1074/jbc.M706531200.

Carter JM, Waite KA, Campenot RB, Vance JE and Vance DE. Enhanced expression and activation of CTP:phosphocholine cytidylyltransferase beta2 during neurite outgrowth. J Biol Chem 278:44988-94, 2003. doi:10.1074/jbc.M307336200.

Schneider H, Braun A, Fullekrug J, Stremmel W and Ehehalt R. Lipid based therapy for ulcerative colitis-modulation of intestinal mucus membrane phospholipids as a tool to influence inflammation. Int J Mol Sci 11:4149-64, 2010. doi: 10.3390/ijms11104149.

Treede I, Braun A, Jeliaskova P, Giese T, Fullekrug J, Griffiths G, Stremmel W and Ehehalt R. TNF-alpha-induced up-regulation of pro-inflammatory cytokines is reduced by phosphatidylcholine in intestinal epithelial cells. BMC Gastroenterol 9:53, 2009. doi:10.1186/1471-230X-9-53.

Hurtado O, Hernandez-Jimenez M, Zarruk JG, Cuartero MI, Ballesteros I, Camarero G, Moraga A, Pradillo JM, Moro MA and Lizasoain I. Citicoline (CDP-choline) increases Sirtuin1 expression concomitant to neuroprotection in experimental stroke. J Neurochem 126:819-26, 2013. doi:10.1111/jnc.12269.

Krupinski J, Ferrer I, Barrachina M, Secades JJ, Mercadal J and Lozano R. CDP-choline reduces pro-caspase and cleaved caspase-3 expression, nuclear DNA fragmentation, and specific PARP-cleaved products of caspase activation following middle cerebral artery occlusion in the rat. Neuropharmacology 42:846-54, 2002. doi:10.1016/S0028-3908(02)00032-1.

Xu F, Hongbin H, Yan J, Chen H, He Q, Xu W, Zhu N, Zhang H, Zhou F and Lee K. Greatly improved neuroprotective efficiency of citicoline by stereotactic delivery in treatment of ischemic injury. Drug Deliv 18:461-7, 2011. doi:10.3109/10717544.2011.589084.

Kim JH, Lee DW, Choi BY, Sohn M, Lee SH, Choi HC, Ki Song H and Suh SW. Cytidine 5'-diphosphocholine (CDP-choline) adversely effects on pilocarpine seizure-induced hippocampal neuronal death. Brain Res 1595:156-65, 2015. doi:10.1016/j.brainres.2014.11.011.

Reiss N, Oplatka A, Hermon J and Naor Z. Phosphatidylserine directs differential phosphorylation of actin and glyceraldehyde-3-phosphate dehydrogenase by protein kinase C: possible implications for regulation of actin polymerization. Biochem Mol Biol Int 40:1191-200, 1996. doi:10.1080/15216549600201833.

Makuch R, Zasada A, Mabuchi K, Krauze K, Wang CL and Dabrowska R. Phosphatidylserine liposomes can be tethered by caldesmon to actin filaments. Biophys J 73:1607-16, 1997. doi:10.1016/S0006-3495(97)78192-X.

Kira M, Tanaka J and Sobue K. Caldesmon and low Mr isoform of tropomyosin are localized in neuronal growth cones. J Neurosci Res 40:294-305, 1995. doi:10.1002/jnr.490400303.

Morita T, Mayanagi T and Sobue K. Caldesmon regulates axon extension through interaction with myosin II. J Biol Chem 287:3349-56, 2011. doi:10.1074/jbc.M111.295618.

Nie S, Kee Y and Bronner-Fraser M. Caldesmon regulates actin dynamics to influence cranial neural crest migration in Xenopus. Mol Biol Cell 22:3355-65, 2011. http://www.molbiolcell.org/content/22/18/3355.full.

Agassandian C, Plantier M, Fattoum A, Represa A and der Terrossian E. Subcellular distribution of calponin and caldesmon in rat hippocampus. Brain Res 887:444-9, 2000. doi:10.1016/S0006-8993(00)03030-4.

Borghese CM, Gomez RA and Ramirez OA. Phosphatidylserine increases hippocampal synaptic efficacy. Brain Res Bull 31:697-700, 1993. doi:10.1016/0361-9230(93)90143-Y.

Anderson HA, Englert R, Gursel I and Shacter E. Oxidative stress inhibits the phagocytosis of apoptotic cells that have externalized phosphatidylserine. Cell Death Differ 9:616-25, 2002. doi:10.1038/sj/cdd/4401013.

Anderson HA, Maylock CA, Williams JA, Paweletz CP, Shu H and Shacter E. Serum-derived protein S binds to phosphatidylserine and stimulates the phagocytosis of apoptotic cells. Nat Immunol 4:87-91, 2003. doi:10.1038/ni871.

Miyanishi M, Tada K, Koike M, Uchiyama Y, Kitamura T and Nagata S. Identification of Tim4 as a phosphatidylserine receptor. Nature 450:435-9, 2007. doi:10.1038/nature06307.

Moller-Tank S, Kondratowicz AS, Davey RA, Rennert PD and Maury W. Role of the phosphatidylserine receptor TIM-1 in enveloped-virus entry. J Virol 87:8327-41, 2013. doi:10.1128/JVI.01025-13.

Morizono K, Xie Y, Olafsen T, Lee B, Dasgupta A, Wu AM and Chen IS. The soluble serum protein Gas6 bridges virion envelope phosphatidylserine to the TAM receptor tyrosine kinase Axl to mediate viral entry. Cell Host Microbe 9:286-98, 2011. doi:10.1016/j.chom.2011.03.012.

Park D, Tosello-Trampont AC, Elliott MR, Lu M, Haney LB, Ma Z, Klibanov AL, Mandell JW and Ravichandran KS. BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature 450:430-4, 2007. doi:10.1038/nature06329.

Tian L, Choi SC, Murakami Y, Allen J, Morse HC, 3rd, Qi CF, Krzewski K and Coligan JE. p85alpha recruitment by the CD300f phosphatidylserine receptor mediates apoptotic cell clearance required for autoimmunity suppression. Nat Commun 5:3146, 2014. doi:10.1038/ncomms4146.

Neher JJ, Neniskyte U and Brown GC. Primary phagocytosis of neurons by inflamed microglia: potential roles in neurodegeneration. Front Pharmacol 3:27, 2012. doi:10.3389/fphar.2012.00027.

Desouza M, Gunning PW and Stehn JR. The actin cytoskeleton as a sensor and mediator of apoptosis. Bioarchitecture 2:75-87, 2012. doi:10.4161/bioa.20975.

Gourlay CW and Ayscough KR. The actin cytoskeleton: a key regulator of apoptosis and ageing? Nat Rev Mol Cell Biol 6:583-9, 2005. doi:10.1038/nrm1682.

Xu P, Baldridge RD, Chi RJ, Burd CG and Graham TR. Phosphatidylserine flipping enhances membrane curvature and negative charge required for vesicular transport. J Cell Biol 202:875-86, 2013. doi:10.1083/jcb.201305094.

Curia CA, Ernesto JI, Stein P, Busso D, Schultz RM, Cuasnicu PS and Cohen DJ. Fertilization induces a transient exposure of phosphatidylserine in mouse eggs. PLoS One 8:e71995, 2013. doi:10.1371/journal.pone.0071995.

Farge E. Increased vesicle endocytosis due to an increase in the plasma membrane phosphatidylserine concentration. Biophys J 69:2501-6, 1995. doi:10.1016/S0006-3495(95)80120-7.

Zhang Z, Hui E, Chapman ER and Jackson MB. Phosphatidylserine regulation of Ca2+-triggered exocytosis and fusion pores in PC12 cells. Mol Biol Cell 20:5086-95, 2009. doi:10.1091/mbc.E09-08-0691.

Franco-Villanueva A, Fernandez-Lopez E, Gabande-Rodriguez E, Banon-Rodriguez I, Esteban JA, Anton IM and Ledesma MD. WIP modulates dendritic spine actin cytoskeleton by transcriptional control of lipid metabolic enzymes. Hum Mol Genet 23:4383-95, 2014. doi:10.1093/hmg/ddu155.

Hanna AN, Berthiaume LG, Kikuchi Y, Begg D, Bourgoin S and Brindley DN. Tumor necrosis factor-alpha induces stress fiber formation through ceramide production: role of sphingosine kinase. Mol Biol Cell 12:3618-30, 2001. http://www.molbiolcell.org/content/12/11/3618.long.

Feldhaus MJ, Weyrich AS, Zimmerman GA and McIntyre TM. Ceramide generation in situ alters leukocyte cytoskeletal organization and beta 2-integrin function and causes complete degranulation. J Biol Chem 277:4285-93, 2002. doi:10.1074/jbc.M106653200.

Park SS, Kim MO, Yun SP, Ryu JM, Park JH, Seo BN, Jeon JH and Han HJ. C(16)-Ceramide-induced F-actin regulation stimulates mouse embryonic stem cell migration: involvement of N-WASP/Cdc42/Arp2/3 complex and cofilin-1/alpha-actinin. Biochim Biophys Acta 1831:350-60, 2013. doi:10.1016/j.bbalip.2012.09.005.

Brann AB, Scott R, Neuberger Y, Abulafia D, Boldin S, Fainzilber M and Futerman AH. Ceramide signaling downstream of the p75 neurotrophin receptor mediates the effects of nerve growth factor on outgrowth of cultured hippocampal neurons. J Neurosci 19:8199-206, 1999. http://www.jneurosci.org/content/19/19/8199.long.

Sanchez C, Rueda D, Segui B, Galve-Roperh I, Levade T and Guzman M. The CB(1) cannabinoid receptor of astrocytes is coupled to sphingomyelin hydrolysis through the adaptor protein fan. Mol Pharmacol 59:955-9, 2001. doi:10.1124/mol.59.5.955.

Herrera B, Carracedo A, Diez-Zaera M, Gomez del Pulgar T, Guzman M and Velasco G. The CB2 cannabinoid receptor signals apoptosis via ceramide-dependent activation of the mitochondrial intrinsic pathway. Exp Cell Res 312:2121-31, 2006. doi:10.1016/j.yexcr.2006.03.009.

Leweke FM and Koethe D. Cannabis and psychiatric disorders: it is not only addiction. Addict Biol 13:264-75, 2008. doi:10.1111/j.1369-1600.2008.00106.x.

Matsuda LA, Lolait SJ, Brownstein MJ, Young AC and Bonner TI. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346:561-4, 1990. doi:10.1038/346561a0.

Jiang S, Fu Y, Williams J, Wood J, Pandarinathan L, Avraham S, Makriyannis A and Avraham HK. Expression and function of cannabinoid receptors CB1 and CB2 and their cognate cannabinoid ligands in murine embryonic stem cells. PLoS One 2:e641, 2007. doi:10.1371/journal.pone.0000641.

Munro S, Thomas KL and Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature 365:61-5, 1993. doi:10.1038/365061a0.

Gong JP, Onaivi ES, Ishiguro H, Liu QR, Tagliaferro PA, Brusco A and Uhl GR. Cannabinoid CB2 receptors: immunohistochemical localization in rat brain. Brain Res 1071:10-23, 2006. doi:10.1016/j.brainres.2005.11.035.

Onaivi ES, Ishiguro H, Gong JP, Patel S, Perchuk A, Meozzi PA, Myers L, Mora Z, Tagliaferro P, Gardner E, Brusco A, Akinshola BE, Liu QR, Hope B, Iwasaki S, Arinami T, Teasenfitz L and Uhl GR. Discovery of the presence and functional expression of cannabinoid CB2 receptors in brain. Ann N Y Acad Sci 1074:514-36, 2006. doi:10.1196/annals.1369.052.

Stella N. Cannabinoid and cannabinoid-like receptors in microglia, astrocytes, and astrocytomas. Glia 58:1017-30, 2010. doi:10.1002/glia.20983.

Argaw A, Duff G, Zabouri N, Cecyre B, Chaine N, Cherif H, Tea N, Lutz B, Ptito M and Bouchard JF. Concerted action of CB1 cannabinoid receptor and deleted in colorectal cancer in axon guidance. J Neurosci 31:1489-99, 2011. doi:10.1523/JNEUROSCI.4134-09.2011.

Berghuis P, Rajnicek AM, Morozov YM, Ross RA, Mulder J, Urban GM, Monory K, Marsicano G, Matteoli M, Canty A, Irving AJ, Katona I, Yanagawa Y, Rakic P, Lutz B, Mackie K and Harkany T. Hardwiring the brain: endocannabinoids shape neuronal connectivity. Science 316:1212-6, 2007. doi:10.1126/science.1137406.

Duff G, Argaw A, Cecyre B, Cherif H, Tea N, Zabouri N, Casanova C, Ptito M and Bouchard JF. Cannabinoid receptor CB2 modulates axon guidance. PLoS One 8:e70849, 2013. doi:10.1371/journal.pone.0070849.

Gerdeman G and Lovinger DM. CB1 cannabinoid receptor inhibits synaptic release of glutamate in rat dorsolateral striatum. J Neurophysiol 85:468-71, 2001. http://jn.physiology.org/content/85/1/468.

Katona I, Sperlagh B, Sik A, Kafalvi A, Vizi ES, Mackie K and Freund TF. Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons. J Neurosci 19:4544-58, 1999. http://www.jneurosci.org/content/19/11/4544.long.

Benard G, Massa F, Puente N, Lourenco J, Bellocchio L, Soria-Gomez E, Matias I, Delamarre A, Metna-Laurent M, Cannich A, Hebert-Chatelain E, Mulle C, Ortega-Gutierrez S, Martin-Fontecha M, Klugmann M, Guggenhuber S, Lutz B, Gertsch J, Chaouloff F, Lopez-Rodriguez ML, Grandes P, Rossignol R and Marsicano G. Mitochondrial CB(1) receptors regulate neuronal energy metabolism. Nat Neurosci 15:558-64, 2012. doi:10.1038/nn.3053.

Kaksonen M, Toret CP and Drubin DG. Harnessing actin dynamics for clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 7:404-14, 2006. doi:10.1038/nrm1940.

Butler MH, David C, Ochoa GC, Freyberg Z, Daniell L, Grabs D, Cremona O and De Camilli P. Amphiphysin II (SH3P9; BIN1), a member of the amphiphysin/Rvs family, is concentrated in the cortical cytomatrix of axon initial segments and nodes of ranvier in brain and around T tubules in skeletal muscle. J Cell Biol 137:1355-67, 1997. doi:10.1083/jcb.137.6.1355.

Leprince C, Romero F, Cussac D, Vayssiere B, Berger R, Tavitian A and Camonis JH. A new member of the amphiphysin family connecting endocytosis and signal transduction pathways. J Biol Chem 272:15101-5, 1997. doi:10.1074/jbc.272.24.15101.

Owen DJ, Wigge P, Vallis Y, Moore JD, Evans PR and McMahon HT. Crystal structure of the amphiphysin-2 SH3 domain and its role in the prevention of dynamin ring formation. EMBO J 17:5273-85, 1998. doi:10.1093/emboj/17.18.5273.

Sakamuro D, Elliott KJ, Wechsler-Reya R and Prendergast GC. BIN1 is a novel MYC-interacting protein with features of a tumour suppressor. Nat Genet 14:69-77, 1996. doi:10.1038/ng0996-69.

Peter BJ, Kent HM, Mills IG, Vallis Y, Butler PJ, Evans PR and McMahon HT. BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 303:495-9, 2004. doi:10.1126/science.1092586.

David C, McPherson PS, Mundigl O and de Camilli P. A role of amphiphysin in synaptic vesicle endocytosis suggested by its binding to dynamin in nerve terminals. Proc Natl Acad Sci U S A 93:331-5, 1996. http://www.pnas.org/content/93/1/331.

Micheva KD, Ramjaun AR, Kay BK and McPherson PS. SH3 domain-dependent interactions of endophilin with amphiphysin. FEBS Lett 414:308-12, 1997. doi:10.1016/S0014-5793(97)01016-8.

Wigge P, Vallis Y and McMahon HT. Inhibition of receptor-mediated endocytosis by the amphiphysin SH3 domain. Curr Biol 7:554-60, 1997. doi:10.1016/S0960-9822(06)00254-5.

Falcone S, Roman W, Hnia K, Gache V, Didier N, Laine J, Aurade F, Marty I, Nishino I, Charlet-Berguerand N, Romero NB, Marazzi G, Sassoon D, Laporte J and Gomes ER. N-WASP is required for Amphiphysin-2/BIN1-dependent nuclear positioning and triad organization in skeletal muscle and is involved in the pathophysiology of centronuclear myopathy. EMBO Mol Med 6:1455-75, 2014. doi:10.15252/emmm.201404436.

Lichte B, Veh RW, Meyer HE and Kilimann MW. Amphiphysin, a novel protein associated with synaptic vesicles. EMBO J 11:2521-30, 1992. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC556727/.

Evergren E, Marcucci M, Tomilin N, Low P, Slepnev V, Andersson F, Gad H, Brodin L, De Camilli P and Shupliakov O. Amphiphysin is a component of clathrin coats formed during synaptic vesicle recycling at the lamprey giant synapse. Traffic 5:514-28, 2004. doi:10.1111/j.1398-9219.2004.00198.x.

Yoshida Y, Kinuta M, Abe T, Liang S, Araki K, Cremona O, Di Paolo G, Moriyama Y, Yasuda T, De Camilli P and Takei K. The stimulatory action of amphiphysin on dynamin function is dependent on lipid bilayer curvature. EMBO J 23:3483-91, 2004. doi:10.1038/sj.emboj.7600355.

De Camilli P, Thomas A, Cofiell R, Folli F, Lichte B, Piccolo G, Meinck HM, Austoni M, Fassetta G, Bottazzo G, Bates D, Cartlidge N, Solimena M, Kilimann MW and et al. The synaptic vesicle-associated protein amphiphysin is the 128-kD autoantigen of Stiff-Man syndrome with breast cancer. J Exp Med 178:2219-23, 1993. doi:10.1084/jem.178.6.2219.

Geis C, Weishaupt A, Hallermann S, Grunewald B, Wessig C, Wultsch T, Reif A, Byts N, Beck M, Jablonka S, Boettger MK, Uceyler N, Fouquet W, Gerlach M, Meinck HM, Siren AL, Sigrist SJ, Toyka KV, Heckmann M and Sommer C. Stiff person syndrome-associated autoantibodies to amphiphysin mediate reduced GABAergic inhibition. Brain 133:3166-80, 2010. doi:10.1093/brain/awq253.

Meunier B, Quaranta M, Daviet L, Hatzoglou A and Leprince C. The membrane-tubulating potential of amphiphysin 2/BIN1 is dependent on the microtubule-binding cytoplasmic linker protein 170 (CLIP-170). Eur J Cell Biol 88:91-102, 2009. doi:10.1016/j.ejcb.2008.08.006.

Chapuis J, Hansmannel F, Gistelinck M, Mounier A, Van Cauwenberghe C, Kolen KV, Geller F, Sottejeau Y, Harold D, Dourlen P, Grenier-Boley B, Kamatani Y, Delepine B, Demiautte F, Zelenika D, Zommer N, Hamdane M, Bellenguez C, Dartigues JF, Hauw JJ, Letronne F, Ayral AM, Sleegers K, Schellens A, Broeck LV, Engelborghs S, De Deyn PP, Vandenberghe R, O'Donovan M, Owen M, Epelbaum J, Mercken M, Karran E, Bantscheff M, Drewes G, Joberty G, Campion D, Octave JN, Berr C, Lathrop M, Callaerts P, Mann D, Williams J, Buee L, Dewachter I, Van Broeckhoven C, Amouyel P, Moechars D, Dermaut B and Lambert JC. Increased expression of BIN1 mediates Alzheimer genetic risk by modulating tau pathology. Mol Psychiatry 18:1225-34, 2013. doi:10.1038/mp.2013.1.

Lugo JN, Smith GD, Arbuckle EP, White J, Holley AJ, Floruta CM, Ahmed N, Gomez MC and Okonkwo O. Deletion of PTEN produces autism-like behavioral deficits and alterations in synaptic proteins. Front Mol Neurosci 7:27, 2014. doi:10.3389/fnmol.2014.00027.

Lugo JN, Smith GD, Morrison JB and White J. Deletion of PTEN produces deficits in conditioned fear and increases fragile X mental retardation protein. Learn Mem 20:670-3, 2013. doi:10.1101/lm.032839.113.

McBride KL, Varga EA, Pastore MT, Prior TW, Manickam K, Atkin JF and Herman GE. Confirmation study of PTEN mutations among individuals with autism or developmental delays/mental retardation and macrocephaly. Autism Res 3:137-41, 2010. doi:10.1002/aur.132.

Rodriguez-Escudero I, Oliver MD, Andres-Pons A, Molina M, Cid VJ and Pulido R. A comprehensive functional analysis of PTEN mutations: implications in tumor- and autism-related syndromes. Hum Mol Genet 20:4132-42, 2011. doi:10.1093/hmg/ddr337.

Pezet S, Marchand F, D'Mello R, Grist J, Clark AK, Malcangio M, Dickenson AH, Williams RJ and McMahon SB. Phosphatidylinositol 3-kinase is a key mediator of central sensitization in painful inflammatory conditions. J Neurosci 28:4261-70, 2008. doi:10.1523/JNEUROSCI.5392-07.2008.

Xu B, Guan XH, Yu JX, Lv J, Zhang HX, Fu QC, Xiang HB, Bu HL, Shi D, Shu B, Qin LS, Manyande A and Tian YK. Activation of spinal phosphatidylinositol 3-kinase/protein kinase B mediates pain behavior induced by plantar incision in mice. Exp Neurol 255:71-82, 2014. doi:10.1016/j.expneurol.2014.02.019.

Xu JT, Tu HY, Xin WJ, Liu XG, Zhang GH and Zhai CH. Activation of phosphatidylinositol 3-kinase and protein kinase B/Akt in dorsal root ganglia and spinal cord contributes to the neuropathic pain induced by spinal nerve ligation in rats. Exp Neurol 206:269-79, 2007. doi:10.1016/j.expneurol.2007.05.029.

Butikofer P, Lin ZW, Chiu DT, Lubin B and Kuypers FA. Transbilayer distribution and mobility of phosphatidylinositol in human red blood cells. J Biol Chem 265:16035-8, 1990. http://www.jbc.org/content/265/27/16035.

Zachowski A. Phospholipids in animal eukaryotic membranes: transverse asymmetry and movement. Biochem J 294:1-14, 1993. doi:10.1042/bj2940001.

Rawyler A, van der Schaft PH, Roelofsen B and Op den Kamp JA. Phospholipid localization in the plasma membrane of Friend erythroleukemic cells and mouse erythrocytes. Biochemistry 241777-83, 1985. http://pubs.acs.org/doi/pdf/10.1021/bi00328a031.

van der Schaft PH, Beaumelle B, Vial H, Roelofsen B, Op den Kamp JA and van Deenen LL. Phospholipid organization in monkey erythrocytes upon Plasmodium knowlesi infection. Biochim Biophys Acta 901:1-14, 1987. doi:10.1016/0005-2736(87)90250-1.

Perret B, Chap HJ and Douste-Blazy L. Asymmetric distribution of arachidonic acid in the plasma membrane of human platelets. A determination using purified phospholipases and a rapid method for membrane isolation. Biochim Biophys Acta 556:434-46, 1979. doi:10.1016/0005-2736(79)90131-7.

Chap HJ, Zwaal RF and van Deenen LL. Action of highly purified phospholipases on blood platelets. Evidence for an asymmetric distribution of phospholipids in the surface membrane. Biochim Biophys Acta 467:146-64, 1977. doi:10.1016/0005-2736(77)90192-4.




DOI: http://dx.doi.org/10.18103/imr.v3i2.354

Refbacks

  • There are currently no refbacks.
Copyright 2016. All rights reserved.