The role of angiotensin II in proliferation and fibrosis of peritoneal dissemination in gastric cancer.

Okazaki Mitsuyoshi

Abstract


 

 The renin–angiotensin system (RAS) plays an important role not only in homeostasis, but also in carcinogenesis. Recent studies have shown that a local RAS can exist in malignant tumor tissue, with angiotensin II potentially acting as a key factor for promotion of tumor growth and metastasis. We discuss the role of angiotensin II in proliferation and fibrosis of peritoneal dissemination in gastric cancer. We previously demonstrated the presence of a local angiotensin II/AT1 receptor generating system in human gastric cancer. Furthermore, three types of cascade for tumor progression with accompanying extensive stromal fibrosis in response to angiotensin II stimulation were identified: antiapoptosis pathway through NF-κB activation, cell proliferation through phosphorylation of ERK1/2, and fibrosis through TGF-β1-induced EMT. AT1 receptor blockers (ARBs) suppress tumor proliferation and fibrotic changes by impairing angiotensin II stimulation, and thus the above cascades, in a xenograft mouse model of fibrotic tumor. ARBs have been widely used as clinical antihypertensive agents without serious side effects, and recent study were reported that ARBs was associated with longer progression-free survival and overall survival in malignancy patients. ARB are expected to offer a new repositioning drug strategy for peritoneal dissemination in gastric cancer.

 


Keywords


angiotensin II; ARB; TGF-β1; gastric cancer; peritoneal dissemination

Full Text:

PDF

References


Orditura M, Galizia G, Sforza V, et al. Treatment of gastric cancer. World J Gastroenterol. 2014;20:1635-49.

Maruyama K, Kaminishi M, Hayashi K, et al. Gastric cancer treated in 1991 in Japan: data analysis of nationwide registry. Gastric Cancer. 2006;9:51-66.

Koizumi W, Narahara H, Hara T, et al. S-1 plus cisplatin versus S-1 alone for first-line treatment of advanced gastric cancer (SPIRITS trial): a phase III trial. Lancet Oncol. 2008;9:215-221.

Fushida S, Kinoshita J, Yagi Y, et al. Dual anti-cancer effects of weekly intraperitoneal docetaxel in treatment of advanced gastric cancer patients with peritoneal carcinomatosis: a feasibility and pharmacokinetic study. Oncol. Rep. 2008;19:1305-10.

Shirao K, Boku N, Yamada Y, et al. Randomized phase III study of 5-fluorouracil continuous infusion vs. sequential methotrexate and 5-fluorouracil therapy in far advanced gastric cancer with peritoneal metastasis (JCOG0106). Jpn. J. Clin. Oncol. 2013;43:972-80.

Fushida S, Kinoshita J, Kaji M, et al. Phase I/II study of intraperitoneal docetaxel plus S-1 for the gastric cancer patients with peritoneal carcinomatosis. Cancer Chemother. Pharmacol. 2013;71:1265-72.

Fushida S, Oyama K, Kinoshita J, et al. Intraperitoneal chemotherapy as a multimodal treatment for gastric cancer patients with peritoneal metastasis. J. Cancer Ther. 2013;4:6-15.

Yashiro M, Chung YS, Nishimura S, et al. Fibrosis in the peritoneum induced by scirrhous gastric cancer cells may act as “soil” for peritoneal dissemination. Cancer. 1996;77:1668-1675.

Peach MJ. Renin-angiotensin system: biochemistry and mechanisms of action. Physiol. Rev. 1977; 57;313-370.

Escobar E, Rodríguez-Reyna TS, Arrieta O, et al. Angiotensin II, cell proliferation and angiogenesis regulator: biologic and therapeutic implications in cancer. Curr. Vasc. Pharmacol. 2004;4:385-399.

Naito T, Masaki T, Nikolic-Paterson DJ, et al. Angiotensin II induces thrombospondin-1 production in human mesangial cells via p38 MAPK and JNK: a mechanism for activation of latent TGF-beta 1. Am. J. Physiol. Renal Physiol. 2004;286:F278-F287.

Kinoshita J, Fushida S, Harada S, et al. Local angiotensin II-generation in human gastric cancer: correlation with tumor progression through the activation of ERK1/2, NF-kappaB and survivin. Int. J. Oncol. 2009;34:1573-1582.

Okazaki M, Fushida S, Harada S, et al. The angiotensin II type 1 receptor blocker candesartan suppresses proliferation and fibrosis in gastric cancer. Cancer Lett. 2014;355:46-53.

Arakawa K, Maruta H. Ability of kallikrein to generate angiotensin II-like pressor substance and a proposed ‘kinin-tensin enzyme system’. Nature. 1980;25:705-706.

Amaya K, Ohta T, Kitagawa H et al. Angiotensin II activates MAP kinase and NF-kappa B through angiotensin II type I receptor in human pancreatic cancer cells. Int. J. Oncol. 2004;25;849-856.

Ohta T, Amaya K, Yi S, et al. Angiotensin converting enzyme-independent, local angiotensin II-generation in human pancreatic ductal cancer tissues. Int. J. Oncol. 2003; 23:593-598.

Lever AF, Hole DJ, Gillis CR, et al. Do inhibitors of angiotensin-I-converting enzyme protect against risk of cancer? Lancet. 1998;352:179-184.

Xu J, Lamouille S, Derynck R. TGF-beta-induced epithelial to mesenchymal transition. Cell Res. 2009;19:156-172.

Massagué J. TGF beta in cancer. Cell. 2008;134:215-230.

Wolf, G. Renal injury due to renin-angiotensin-aldosterone system activation of the transforming growth factor-beta pathway. Kidney Int. 2006;70:1914-1919.

Carvajal G, Rodríguez-Vita J, Rodrigues-Díez R, et al. Angiotensin II activates the Smad pathway during epithelial mesenchymal transdifferentiation. Kidney Int. 2008;74:585-595.

Pietras K, Ostman A. Hallmarks of cancer: interactions with the tumor stroma, Exp. Cell Res. 2010;316:1324-1331.

Tsukada T, Fushida S, Harada S, et al. The role of human peritoneal mesothelial cells in the fibrosis and progression of gastric cancer. Int. J. Oncol. 2012;41:476-482.

Batra VK, Gopalakrishnan V, McNeill JR, et al. Angiotensin II elevates cytosolic free calcium in human lung adenocarcinoma cells via activation of AT1 receptors. Cancer Lett. 1994;76:19-24.

Goldfarb DA, Diz DI, Tubbs RR, et al. Angiotensin II receptor subtypes in the human renal cortex and renal cell carcinoma. J. Urol. 1994;151:208-213.

Inwang ER, Puddefoot JR, Brown CL, et al. Angiotensin II type 1 receptor expression in human breast tissues. Br J Cancer. 1997;75:1279-1283.

Marsigliante S, Resta L, Muscella A, et al. AT1 angiotensin II receptor subtype in the human larynx and squamous laryngeal carcinoma. Cancer Lett. 1996;110:19-27.

Yoshiji H, Yoshii J, Ikenaka Y, et al. Suppression of the renin angiotensin system attenuates vascular endothelial growth factor-mediated tumor development and angiogenesis in murine hepatocellular carcinoma cells. Int. J. Oncol. 2002;20:1227-1231.

Suganuma T, Ino K, Shibata K, et al. Functional expression of the angiotensin II type 1 receptor in human ovarian carcinoma cells and its blockade therapy resulting in suppression of tumor invasion, angiogenesis, and peritoneal dissemination. Clin. Cancer Res. 2005;11:2686-2694.

Kosugi M, Miyajima A, Kikuchi E, et al. Angiotensin II type 1 receptor antagonist candesartan as an angiogenic inhibitor in a xenograft model of bladder cancer. Clin. Cancer Res. 2006;12:2888-2893.

Kosaka T, Miyajima A, Takayama E, et al. Angiotensin II type 1 receptor antagonist as an angiogenic inhibitor in prostate cancer. Prostate. 2007;67:41-49.

Okamoto K, Tajima H, Ohta T et al. Angiotensin II induces tumor progression and fibrosis in intrahepatic cholangiocarcinoma through an interaction with hepatic stellate cells. Int. J. Oncol. 2010;37:1251-1259.

Brooke BS, Habashi JP, Judge DP, et al. Angiotensin II blockade and aortic-root dilation in Marfan’s syndrome. N. Eng. J. Med. 2008;358:2787-2795.

Shinto O, Yashiro M, Kawajiri H, et al. Inhibitory effect of a TGF beta receptor type-I inhibitor, Ki26894, on invasiveness of scirrhous gastric cancer cells. Br. J. Cancer. 2010;102:844-851.

Lv ZD, Wang HB, Dong Q, et al. Mesothelial cells differentiate into fibroblast-like cells under the scirrhous gastric cancer microenvironment and promote peritoneal carcinomatosis in vitro and in vivo. Cell. Biochem. 2013;377:177-185.

Roberts AB, Sporn MB. The transforming growth factor βs. In: M.B. Sporn, A.B. Roberts (Eds.), Peptides, Growth Factors and Their Receptors Part I, Springer-Verlag, Berlin, 1990, pp. 419-472.

Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. FASEB J. 2007;22:659-661.

Nakai Y, Isayama H, Ijichi H, et al. Inhibition of renin–angiotensin system affects prognosis of advanced pancreatic cancer receiving gemcitabine. Br. J. Cancer. 2010;103:1644-1648.




DOI: http://dx.doi.org/10.18103/imr.v3i1.330

Refbacks

  • There are currently no refbacks.
Copyright 2016. All rights reserved.