Transplacental Viral Infection: Mechanisms and Manifestations

Vicky M.-H. Sung

Abstract


      In 21st century, infectious disease control is much faster than never before. In combination of robotic instruments and high-tech analytic tools, we are able to put pieces of knowledge of how immune networks interact to fight against infectious agents, and to develop vaccines and better treatments. Treatments for pregnant women for highly contagious diseases have been a major challenge for current medicine because the complications of the interactions between fetal and maternal immune systems during pregnancy, including suppression of maternal immune system to avoid rejection of fetus and to protect fetus from pathogens or any harmful agents during gestation. This article focuses on what defense systems are built in nature to prevent viral transplacental infection, and to ensure a safe pregnancy for the mother and healthy development of the fetus. In addition to innate and acquired immunity to decease pathogens, placental barrier and placental immunity further provide restriction of viral entry and viral replication in placenta. Viral pathogens are able to utilize various means to infect placental trophoblasts and to transplacentally infect the fetus. The teratogenic effects of several viruses and potential clinical manifestations of congenital infections are also discussed. Because of the efficiency of placental barrier and the placental immunity, to restrict most of viral infection, only very few viruses can transplacentally infect fetus in pregnant women. The consequences of the transplacental infection also vary at different stages of gestation. Transplacental infections happened in early gestation can lead to more adverse outcomes, including stillbirth, abortion, and congenital malformations of fetus, such as ZIKV transplacental infection associated with developing microcephaly and neurological disorders of affected fetus. Therefore, prevention of viral infection in pregnant women, and understanding mechanisms of transplacental infections may help to develop better therapeutic strategy for congenital infectious diseases.


Keywords


transplacental infection; placenta barrier; teratogenic effect; cytotrophoblast; syncytiatrophoblast; placental immunology; HIV-1; HCMV; Zika virus; West Nile virus; HHV; HSV-1;Coxsackievirus B; Parvovirus B19; HCV;HBV;Influenza virus; Dengue virus

Full Text:

 Subscribers Only

References


Jach R, Galarowicz B, Huras H, Pawlik D, Basta T, Streb J, Wolski H, Ludwin A, Ludwin I. 2014. Vertical transmission of HPV in pregnancy. A prospective clinical study of HPV-positive pregnant women. Ginekol Pol. 85: 672-6.

Silasi, M. Cardenas, I. Kwon, J.Y. Racicot, K. Aldo, P. Mor, G. 2015. Viral infections during pregnancy. Am J Reprod Immunol 73:199-213.

Vorou R. 2016. Zika virus, vectors, reservoirs, simplifying hosts, and their potential to spread worldwide: what we know and what we should investigate urgently. Int J Infect Dis. 48:85-90.

Faria NR, Azevedo Rdo S, Kraemer MU, Souza R, Cunha MS, et al. 2016. Zika virus in the Americas: Early epidemiological and genetic findings. Science. 352:345-9.

Mlakar J, Korva M, Tul N, Popović M, Poljšak-Prijatelj M, Mraz J, Kolenc M, Resman Rus K, Vesnaver Vipotnik T, Fabjan Vodušek V, Vizjak A, Pižem J, Petrovec M, Avšič Županc T. 2016. Zika Virus Associated with Microcephaly. N Engl J Med. 374:951-8.

O'Leary DR, Kuhn S, Kniss KL, Hinckley AF, Rasmussen SA, Pape WJ, Kightlinger LK, Beecham BD, Miller TK, Neitzel DF, Michaels SR, Campbell GL, Lanciotti RS, Hayes EB. 2006. Birth outcomes following West Nile Virus infection of pregnant women in the United States: 2003-2004. Pediatrics. 117:e537-45.

Williams JW. 1927. Placenta Circumvallata. Am. J. Obstet. Gynecol. 13:1-16.

Julander JG, Winger QA, Rickords LF, Shi PY, Tilgner M, Binduga-Gajewska I, Sidwell RW, Morrey JD. 2006. West Nile virus infection of the placenta. Virology.347:175-82.

Malassiné A, Frendo JL, Evain-Brion D. 2003. A comparison of placental development and endocrine functions between the human and mouse model. Hum Reprod Update. 9:531-9.

Horii M, Li Y, Wakeland AK, Pizzo DP, Nelson KK, Sabatini K, Laurent LC, Liu Y, Parast MM. 2016. Human pluripotent stem cells as a model of trophoblast differentiation in both normal development and disease. Proc Natl Acad Sci U S A.113:E3882-91.

Maidji E, Genbacev O, Chang HT, Pereira L. 2007. Developmental regulation of human cytomegalovirus receptors in cytotrophoblasts correlates with distinct replication sites in the placenta. J Virol. 81:4701-12.

Nowakowski TJ, Pollen AA, Di Lullo E, Sandoval-Espinosa C, Bershteyn M, Kriegstein AR. 2016. Expression analysis highlights AXL as a candidate Zika virus entry receptor in neural stem cells. Cell Stem Cell.18:591-6.

O'Bryan JP, Frye RA, Cogswell PC, Neubauer A, Kitch B, Prokop C, Espinosa R 3rd, Le Beau MM, Earp HS, Liu ET. 1991. Axl, a transforming gene isolated from primary human myeloid leukemia cells, encodes a novel receptor tyrosine kinase. Mol Cell Biol. 11:5016-31.

D'Alfonso TM, Hannah J, Chen Z, Liu Y, Zhou P, Shin SJ. 2014. Axl receptor tyrosine kinase expression in breast cancer. J Clin Pathol. 67:690-6.

The Human Protein Atlas Project. http://www.proteinaltas.org.

Li Q, Ali MA, Cohen JI. 2006. Insulin degrading enzyme is a cellular receptor mediating varicella-zoster virus infection and cell-to-cell spread. Cell.127:305-16

Vekrellis K, Ye Z, Qiu WQ, Walsh D, Hartley D, Chesneau V, Rosner MR, Selkoe DJ. 2000. Neurons regulate extracellular levels of amyloid beta-protein via proteolysis by insulin-degrading enzyme. J Neurosci. 20:1657-65.

Chen JJ, Zhu Z, Gershon AA, Gershon MD. 2004. Mannose 6-phosphate receptor dependence of varicella zoster virus infection in vitro and in the epidermis during varicella and zoster. Cell. 119:915-26.

Amirhessami-Aghili N, Spector SA.1991. Human immunodeficiency virus type 1 infection of human placenta: potential route for fetal infection. J Virol. 65:2231-6.

David FJ, Autran B, Tran HC, Menu E, Raphael M, Debre P, Hsi BL, Wegman TG, Barre-Sinoussi F, Chaouat G. 1992. Human trophoblast cells express CD4 and are permissive for productive infection with HIV-1. Clin Exp Immunol. 88:10-6.

McGann KA, Collman R, Kolson DL, Gonzalez-Scarano F, Coukos G, Coutifaris C, Strauss JF, Nathanson N. 1994. Human immunodeficiency virus type 1 causes productive infection of macrophages in primary placental cell culture. J Infect Dis.169:746-53.

Johnson EL, Chakraborty R. 2016. HIV-1 at the placenta: immune correlates of protection and infection. Curr Opin Infect Dis.29:248-55.

Tilburgs T, Crespo AC, van der Zwan A, Rybalov B, Raj T, Stranger B, Gardner L, Moffett A, Strominger JL. 2015. Human HLA-G+ extravillous trophoblasts: Immune-activating cells that interact with decidual leukocytes. Proc Natl Acad Sci U S A. 112:7219-24.

Chan G, Hemmings DG, Yurochko AD, Guilbert LJ. 2002. Human cytomegalovirus-caused damage to placental trophoblasts mediated by immediate-early gene-induced tumor necrosis factor-alpha. Am J Pathol. 161:1371-81.

Di Stefano M, Calabrò ML, Di Gangi IM, Cantatore S, Barbierato M, Bergamo E, Kfutwah AJ, Neri M, Chieco-Bianchi L, Greco P, Gesualdo L, Ayouba A, Menu E, Fiore JR. 2008. In vitro and in vivo human herpesvirus 8 infection of placenta. PLoS One. 3:e4073.

Hidari KI, Suzuki T. 2011. Dengue virus receptor. Trop Med Health.39:37-43.

Maidji E, McDonagh S, Genbacev O, Tabata T, Pereira L. 2006. Maternal antibodies enhance or prevent cytomegalovirus infection in the placenta by neonatal Fc receptor-mediated transcytosis. Am J Pathol.168:1210-26.

Arias RA, Muñoz LD, Muñoz-Fernández MA. 2003. Transmission of HIV-1 infection between trophoblast placental cells takes place via an LFA-1-mediated cell to cell contact. Virology. 307:266-77.

Piguet V, Sattentau Q. 2004. Dangerous liaisons at the virological synapse. J Clin Invest. 114:605-10.

Xiao J, Garcia-Lloret M, Winkler-Lowen B, Miller R, Simpson K, Guilbert LJ. 1997. ICAM-1-mediated adhesion of peripheral blood monocytes to the maternal surface of placental syncytiotrophoblasts: implications for placental villitis. Am J Pathol. 150:1845-60.

McDonald D, Wu L, Bohks SM, KewalRamani VN, Unutmaz D, Hope TJ. 2003. Recruitment of HIV and its receptors to dendritic cell-T cell junctions. Science.300:1295-7.

Vidricaire G, Tremblay MJ. 2005. Rab5 and Rab7, but not ARF6, govern the early events of HIV-1 infection in polarized human placental cells. J Immunol. 175:6517-30.

Wang AH, Wang AQ, Xu DZ, Men K, Yan YP, Zhang JX, Liu Y, Huang XF, Wang CM. 2008. The mechanism of HBV infection of human trophoblast cell. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi. 22:51-3.

Kadiu I, Narayanasamy P, Dash PK, Zhang W, Gendelman HE. 2012. Biochemical and biologic characterization of exosomes and microvesicles as facilitators of HIV-1 infection in macrophages. J Immunol.189:744-54.

Amara A, Littman DR. 2003. After Hrs with HIV. J Cell Biol.162:371-5.

Holder B, Jones T, Sancho Shimizu V, Rice TF, Donaldson B, Bouqueau M, Forbes K, Kampmann B. 2016. Macrophage exosomes induce placental inflammatory cytokines: a novel mode of maternal-placental messaging. Traffic.17:168-78.

Csoma E, Bácsi A, Liu X, Szabó J, Ebbesen P, Beck Z, Kónya J, Andirkó I, Nagy E, Tóth FD. 2002. Human herpesvirus 6 variant A infects human term syncytiotrophoblasts in vitro and induces replication of human immunodeficiency virus type 1 in dually infected cells. J Med Virol. 67:67-87.

Tóth FD, Aboagye-Mathiesen G, Nemes J, Liu X, Andirkó I, Hager H, Zdravkovic M, Szabó J, Kiss J, Aranyosi J, Ebbesen P. 1997. Epstein-Barr virus permissively infects human syncytiotrophoblasts in vitro and induces replication of human T cell leukemia-lymphoma virus type I in dually infected cells. Virology. 229:400-14.

Bácsi A, Aranyosi J, Beck Z, Ebbesen P, Andirkó I, Szabó J, Lampé L, Kiss J, Gergely L, Tóth FD. 1999. Placental macrophage contact potentiates the complete replicative cycle of human cytomegalovirus in syncytiotrophoblast cells: role of interleukin-8 and transforming growth factor-beta 1. J Interferon Cytokine Res. 19:1153-60.

Koga K, Mor G. 2008. Expression and function of toll-like receptors at the maternal-fetal interface. Reprod Sci.15:231-42.

Abrahams VM, Straszewski-Chavez SL, Guller S, Mor G. 2004. First trimester trophoblast cells secrete Fas ligand which induces immune cell apoptosis. Mol Hum Reprod 10:55-63.

Rizzo R, Bortolotti D, Bolzani S, Fainardi E. 2014. HLA-G molecules in autoimmune diseases and infections. Front Immunol.5:592.

Rajagopalan S, Long EO. 1999. A human histocompatibility leukocyte antigen (HLA)-G-specific receptor expressed on all natural killer cells. J Exp Med.189:1093-100.

Tilburgs T, Evans JH, Crespo ÂC, Strominger JL. 2015. The HLA-G cycle provides for both NK tolerance and immunity at the maternal-fetal interface. Proc Natl Acad Sci U S A. 112:13312-7.

Okada S, Okada H, Sanezumi M, Nakajima T, Yasuda K, Kanzaki H. 2000. Expression of interleukin-15 in human endometrium and deciduas. Mol Hum Reprod.6:75-80.

Rizzo R, Malagutti N, Bortolotti D, Gentili V, Rotola A, Fainardi E, Pezzolo T, Aimoni C, Pelucchi S, Di Luca D, Pastore A. 2014. Infection and HLA-G molecules in nasal polyposis. J Immunol Res. 2014:407430.

Mégret F, Prehaud C, Lafage M, Moreau P, Rouas-Freiss N, Carosella ED, Lafon M. 2007. Modulation of HLA-G and HLA-E expression in human neuronal cells after rabies virus or herpes virus simplex type 1 infections. Hum Immunol.68:294-302.

Weng PJ, Fu YM, Ding SX, Xu DP, Lin A, Yan WH. 2011. Elevation of plasma soluble human leukocyte antigen-G in patients with chronic hepatitis C virus infection. Hum Immunol. 72:406-11.

Shi WW, Lin A, Xu DP, Bao WG, Zhang JG, Chen SY, Li J, Yan WH. 2011. Plasma soluble human leukocyte antigen-G expression is a potential clinical biomarker in patients with hepatitis B virus infection. Hum Immunol.72:1068-73.

Potter JA, Garg M, Girard S, Abrahams VM. 2015. Viral single stranded RNA induces a trophoblast pro-inflammatory and antiviral response in a TLR8-dependent and –independent manner. Biol Reprod.92:17.

Chaudhuri S, Lowen B, Chan G, Davey A, Riddell M, Guilbert LJ. 2009. Human cytomegalovirus interacts with toll-like receptor 2 and CD14 on syncytiotrophoblasts to stimulate expression of TNFalpha mRNA and apoptosis. Placenta. 30:994-1001.

Teoh PJ, Menzies FM, Hansell CA, Clarke M, Waddell C, Burton GJ, Nelson SM, Nibbs RJ. 2014. Atypical chemokine receptor ACKR2 mediated chemokine scavenging by primary human trophoblasts and can regulate fetal growth, placental structure and neonatal mortality in mice. J Immunol.193:5218-28.

Škorvanová L, Švančarová P, Svetlíková D, Betáková T. 2015. Protective efficacy of IFN- and IFN-s against influenza viruses in induced A549 cells. Acta Virol.59:413-7.

Bayer A, Lennemann NJ, Ouyang Y, Bramley JC, Morosky S, Marques ET Jr, Cherry S, Sadovsky Y, Coyne CB. 2016. Type III interferons produced by human placental trophoblasts confer protection against zika virus infection. Cell Host Microbe.19:705-12.

Dalsgaard AM, Aboagye-Mathiesen G, Justesen J, Zdravkovic M, Ebbesen P. 1995. Basal and interferon-induced 2’, 5’-oligoadenylate synthetase activity in human placental trophoblast and trophoblast-derived malignant cell lines. Placenta.16:137-46.

Zhang GY, Beltchev B, Fournier A, Zhang YH, Malassiné A, Bisbal C, Ehresmann B, Ehresmann C, Darlix JL, Thang MN. 1993. High levels of 2’, 5’-oligoadenylate synthetase and 2’, 5’-oligoadenylate-dependent endonuclease in human trophoblast. AIDS Res Hum Retroviruses. 9:189-96.

Helbig KJ, Beard MR. 2014. The role of viperin in the innate antiviral response. J Mol Biol. 426:1210-9.

Wang B, Fang Y, Wu Y, Koga K, Osuga Y, Lv S, Chen D, Zhu Y, Wang J, Huang H. 2015. Viperin is induced following toll-like receptor 3 (TLR3) ligation and has a virus-responsive function in human trophoblast cells. Placenta.36:667-73.

Wang G, Gao Y, Li L, Jin G, Cai Z, Chao JI, Lin HK. 2012. K63-linked ubiquitination in kinase activation and cancer. Front Oncol.2:5.

Sharma S, tenOever BR, Grandvaux N, Zhou GP, Lin R, Hiscott J.2003. Triggering the interferon antiviral response through an IKK-related pathway. Science. 300(5622):1148-51.

Jiang X, Chen ZJ. 2011. Viperin links lipid bodies to immune defense. Immunity.34:285-7.

Nasr N, Maddocks S, Turville SG, Harman AN, Woolger N, Helbig KJ, Wilkinson J, Bye CR, Wright TK, Rambukwelle D, Donaghy H, Beard MR, Cunningham AL.2012. HIV-1 infection of human macrophages directly induces viperin which inhibits viral production. Blood. 120:778-88.

Tan KS, Olfat F, Phoon MC, Hsu JP, Howe JL, Seet JE, Chin KC, Chow VT.2012. In vivo and in vitro studies on the antiviral activities of viperin against influenza H1N1 virus infection. J Gen Virol.93:1269-77

Helbig KJ, Eyre NS, Yip E, Narayana S, Li K, Fiches G, McCartney EM, Jangra RK, Lemon SM, Beard MR.2011. The antiviral protein viperin inhibits hepatitis C virus replication via interaction with nonstructural protein 5A. Hepatology.54:1506-17.

Helbig KJ, Carr JM, Calvert JK, Wati S, Clarke JN, Eyre NS, Narayana SK, Fiches GN, McCartney EM, Beard MR.2013. Viperin is induced following dengue virus type-2 (DENV-2) infection and has anti-viral actions requiring the C-terminal end of viperin. PLoS Negl Trop Dis. 7:e2178.

Teng TS, Foo SS, Simamarta D, Lum FM, Teo TH, Lulla A, Yeo NK, Koh EG, Chow A, Leo YS, Merits A, Chin KC, Ng LF. 2012. Viperin restricts chikungunya virus replication and pathology. J Clin Invest.122:4447-60.

McGillivary G, Jordan ZB, Peeples ME, Bakaletz LO. 2013. Replication of respiratory syncytia virus is inhibited by the host defense molecule viperin. J Innate Immun.5:60-71.

Carlton-Smith C, Elliott RM, 2012. Viperin, MTAP44, and protein kinase R contribute to the interferon-induced inhibition of Bunyamwera Orthobunyavirus replication. J Virol.86:11548-57.

Szretter KJ, Brien JD, Thackray LB, Virgin HW, Cresswell P, Diamond MS. 2011. The interferon-inducible gene viperin restricts West Nile virus pathogenesis. J Virol.85:11557-66.

Seo JY, Yaneva R, Hinson ER, Cresswell P. 2011. Human cytomegalovirus directly induces the antiviral protein viperin to enhance infectivity. Science.332:1093-7.

Chan YL, Chang TH, Liao CL, Lin YL. 2011. The cellular antiviral protein viperin is attenuated by proteosome-mediated protein degradation in Japanese encephalitis virus-infected cells. J Virol.82:10455-64.

Mouillet JF, Ouyang Y, Bayer A, Coyne CB, Sadovsky Y. 2014.The role of trophoblastic microRNAs in placental viral infection. Int J Dev Biol.58:281-9.

Delorme-Axford E, Donker RB, Mouillet JF, Chu T, Bayer A, Ouyang Y, Wang T, Stolz DB, Sarkar SN, Morelli AE, Sadovsky Y, Coyne CB. 2013. Human placental trophoblasts confer viral resistance to recipient cells. Proc Natl Acad Sci U S A.110:12048-53.

Delorme-Axford E, Bayer A, Sadovsky Y, Coyne CB. 2013. Autophagy as a mechanism of antiviral defense at the maternal-fetal interface. Autophagy. 9:2173-4.

Bourinbaiar AS, Nagorny R. 1992. Effect of human chorionic gonadotropin (hCG) on reverse transcriptase activity in HIV-1 infected lymphocytes and monocytes. FEMS Microbiol Lett.75:27-30.

Li J, Korteweg C, Qiu Y, Luo J, Chen Z, Huang G, Li W, Gu J. 2014. Two ultrastructural distribution patterns of immunoglobulin G in human placenta and functional implications. Biol Reprod.91:128.

Bulla R, Bossi F, Agostinis C, Radillo O, Colombo F, De Seta F, Tedesco F. 2009. Complement production by trophoblast cells at the feto-maternal interface. J Reprod Immunol.82:119-25.

Schofield D, Cotran RS. 1994. Diseases of Infancy and Childhood. p.437-443. In Cotran RS, Kumar V, Robbins S. (ed.) Robbins Pathological Basis of Disease, 5th edition, W.B. Saunders Company. Philadelphia, Pennsylvania.

Adams Waldorf KM, McAdams RM. 2013. Influence of infection during pregnancy on fetal development. Reproduction.146:151-62.

Atreya CD, Lee NS, Forng RY, Hofmann J, Washington G, Marti G, Nakhasi HL. 1998. The rubella virus putative replicase interacts with the retinoblastoma tumor suppressor protein. Virus Genes.16:177-83.

Dahlquist GG. 1997. Viruses and other perinatal exposures as initiating events for -cell destruction. Ann Med. 29:413-7.

Cong H, Jiang Y, Tien P. 2011. Identification of the myelin oligodendrocyte glycoprotein as a cellular receptor for rubella virus. J Virol.85:11038-47.

Lazar M, Perelygina L, Martines R, Greer P, Paddock CD, Peltecu G, Lupulescu E, Icenogle J, Zaki SR. 2016. Immunolocalization and distribution of rubella antigen in fetal congenital rubella syndrome. EBioMedicine.3:86-92.

Saxen L, Hjelt L, Sjostedt JE, Hakosalo J, Hakosalo H. 1960. Asian influenza during pregnancy and congenital malformations. Acta Pathol Microbiol Scand.49:114-26.

Wilson MG, Stein AM. 1969. Teratogenic effects of asian influenza. An extended study. JAMA.210:336-7.

Irving WL, James DK, Stephenson T, Laing P, Jameson C, Oxford JS, Chakraverty P, Brown DW, Boon AC, Zambon MC. 2000. Influenza virus infection in the second and third trimesters of pregnancy: a clinical and seroepidemiological study. BJOG.107:1282-9.

Hartert TV, Neuzil KM, Shintani AK, Mitchel EF Jr, Snowden MS, Wood LB, Dittus RS, Griffin MR. 2003. Maternal morbidity and perinatal outcomes among pregnant women with respiratory hospitalizations during influenza season. Am J Obstet Gynecol.189:1705-12.

Gu J, Xie Z, Gao Z, Liu J, Korteweg C, Ye J, Lau LT, Lu J, Gao Z, Zhang B, McNutt MA, Lu M, Anderson VM, Gong E, Yu AC, Lipkin WI. 2007. H5N1 infection of the respiratory tract and beyond: a molecular pathology study. Lancet.370:1137-45.

Acs N, Bánhidy F, Puhó E, Czeizel AE. 2005. Maternal influenza during pregnancy and risk of congenital abnormalities in offspring. Birth Defects Res A Clin Mol Teratol. 73:989-96.

Muehlenbachs A, de la Rosa Vázquez O, Bausch DG, Schafer IJ, Paddock CD, et al. 2016. Ebola virus disease in pregnancy: clinical, histopathologic, and immunohistochemical findings. J Infect Dis. pii: jiw206.

Alvarez CP, Lasala F, Carrillo J, Muñiz O, Corbí AL, Delgado R. 2002. C-type lectins DC-SIGN and L-SIGN mediate cellular entry by Ebola virus in cis and in trans. J Virol.76:6841-4.

Miller EH, Obernosterer G, Raaben M, Herbert AS, Deffieu MS, et al. 2012. Ebola virus entry requires the host-programmed recognition of an intracellular receptor. EMBO J.31:1947-60.

Shabani Z, Esghaei M, Keyvani H, Shabani F, Sarmadi F, Mollaie H, Monavari SH. 2015. Relation between parvovirus B19 infection and fetal mortality and spontaneous abortion. Med J Islam Repub Iran. 29:197.

Jordan JA, DeLoia JA. 1999. Globoside expression within the human placenta. Placenta. 20:103-8.

Koi H, Zhang J, Parry S. 2001. The mechanisms of placental viral infection. Ann N Y Acad Sci.943:148-56.

Montgomery RI, Warner MS, Lum BJ, Spear PG. 1996. Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family. Cell. 87:427-36.

Warner MS, Geraghty RJ, Martinez WM, Montgomery RI, Whitbeck JC, Xu R, Eisenberg RJ, Cohen GH, Spear PG. 1998. A cell surface protein with herpes virus entry activity (HveB) confers susceptibility to infection by mutants of herpes simplex virus type I, herpes simplex virus 2, and pseudorabies virus. Virology.246:179-89.

Geraghty RJ, Krummenacher C, Cohen GH, Eisenberg RJ, Spear PG. 1998. Entry of alphaherpesviruses mediated by poliovirus receptor-related protein 1 and poliovirus receptor. Science.280:1618-20.

Koi H, Zhang J, Makrigiannakis A, Getsios S, MacCalman CD, Strauss JF 3rd, Parry S. 2002. Syncytiotrophoblast is a barrier to maternal-fetal transmission of herpes simplex virus. Biol Reprod.67:1572-9.

Zdravkovic M, Aboagye-Mathiesen G, Zachar V, Mosborg-Petersen P, Tóth FD, Liu X, Ebbesen P. 1994. In vitro cytotoxic activity of cord blood NK cells against herpes simplex virus type-1 infected purified human term villous cytotrophoblasts. Viral Immunol.7:133-40.

Halwachs-Baumann G, Wilders-Truschnig M, Desoye G, Hahn T, Kiesel L, Klingel K, Rieger P, Jahn G, Sinzger C. 1998. Human trophoblast cells are permissive to the complete replicative cycle of human cytomegalovirus. J Virol.72:7598-602.

Hemmings DG, Guilbert LJ. 2002. Polarized release of human cytomegalovirus from placental trophoblasts. J Virol.76:6710-7.

Lutsenko MT, Andriyevskaya IA. 2015. Transamination in syncytiotrophoblast of placenta villi in parturient women suffered the acute form of CMV infection at the third trimester of gestation. Vestn Ross Akad Med Nauk.6:621-6.

Girolami UD, Anthony DC, Frosch MP. 1994. Peripheral nerve and skeletal muscle. p.1279. In Cotran RS, Kumar V, Robbins S. (ed.) Robbins Pathological Basis of Disease, 5th edition, W.B. Saunders Company. Philadelphia, Pennsylvania.

Johansson MA, Mier-y-Teran-Romero L, Reefhuis J, Gilboa SM, Hills SL. 2016. Zika and the risk of microcephaly. N Engl J Med.375:1-4.

Carneiro LA, Travassos LH. 2016. Autophagy and viral diseases transmitted by Aedes aegypti and Aedes albopictus. Microbes Infect.18:169-71.

Mlakar J, Korva M, Tul N, Popović M, Poljšak-Prijatelj M, Mraz J, Kolenc M, Resman Rus K, Vesnaver Vipotnik T, Fabjan Vodušek V, Vizjak A, Pižem J, Petrovec M, Avšič Županc T. 2016. Zika virus associated with microcephaly. N Engl J Med.374:951-8.

Noronha Ld, Zanluca C, Azevedo ML, Luz KG, Santos CN. 2016. Zika virus damages the human placental barrier and presents marked fetal neurotropism. Mem Inst Oswaldo Cruz.111:287-93.

Sauerbrei A, Wutzler P. 2000.The congenital varicella syndrome. J Perinatol.20:548-54.

Goldenberg RL, Thompson C. 2003. The infectious origins of stillbirth. Am J Obstet Gynecol.189:861-73.

Modlin JF, Crumpacker CS.1982. Coxsackievirus B infection in pregnant mice and transplacental infection of the fetus. Infect Immun.37:222-6.

Muehlenbachs A, Bhatnagar J, Zaki SR. 2015. Tissue tropism, pathology and pathogenesis for enterovirus infection. J Pathol. 235:217-28.

Feuer R, Mena I, Pagarigan RR, Harkins S, Hassett DE, Whitton JL. 2003. Coxsackievirus B3 and the neonatal CNS: the roles of stem cells, developing neurons, and apoptosis in infection, viral dissemination, and disease. Am J Pathol.163:1379-93.

Watson WJ, Awadallah S, Jaqua MJ. 1995. Intrauterine infection with coxsackievirus: is it a cause of congenital cardiac malformations? Infect Dis Obstet Gynecol.3:79-81.

Alpert SG, Fergerson J, Noël LP. 2003. Intrauterine West Nile virus: ocular and systemic findings. Am J Ophthalmol.136:733-5.

Bruno J, Rabito FJ Jr, Dildy GA 3rd. 2004. West Nile virus meningoencephalitis during pregnancy. J La State Med Soc.156:204-5.

Hall CB, Caserta MT, Schnabel K, Shelley LM, Marino AS, Carnahan JA, Yoo C, Lofthus GK, McDermott MP. 2008. Chromosomal integration of human herpesvirus 6 is the major mode of congenital human herpesvirus 6 infection. Pediatrics.122:513-20.

Csoma E, Bácsi A, Liu X, Szabó J, Ebbesen P, Beck Z, Kónya J, Andirkó I, Nagy E, Tóth FD. 2002. Human herpesvirus 6 variant A infects human term syncytiotrophoblasts in vitro and induces replication of human immunodeficiency virus type 1 in dually infected cells. J Med Virol.67:67-87.

Cisneros-Herreros JM, Herrero-Romero M.2006. Hepatitis due to herpes group viruses. Enferm Infecc Microbiol Clin.24:392-7.

Forghieri F, Luppi M, Barozzi P, Riva G, Morselli M, et al. 2016. Chronic and recurrent benign lymphadenopathy without constitutional symptoms associated with human herpesvirus-6B reactivation. Br J Haematol.172:561-72.

Li F, Li L, Zhong Y, Xie Q, Huang J, Kang X, Wang D, Xu L, Huang T. 2013. Relationship between LTR methylation and gag expression of HIV-1 in human spermatozoa and sperm-derived embryos. PLoS One.8:e54801.

Holder BS, Tower CL, Forbes K, Mulla MJ, Aplin JD, Abrahams VM. 2012. Immune cell activation by trophoblast-derived microvesicles is mediated by syncytin 1. Immunology.136:184-91.

Roelvink PW, Lizonova A, Lee JG, Li Y, Bergelson JM, Finberg RW, Brough DE, Kovesdi I, Wickham TJ. 1998. The coxsackievirus-adenovirus receptor protein can function as a cellular attachment protein for adenovirus serotypes from subgroups A, C, D, E, and F. J Virol.72:7909-15.

Geijtenbeek TB, Kwon DS, Torensma R, van Vliet SJ, van Duijnhoven GC, Middel J, Cornelissen IL, Nottet HS, KewalRamani VN, Littman DR, Figdor CG, van Kooyk Y. 2000. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell.100:587-97.

Izquierdo-Useros N, Lorizate M, McLaren PJ, Telenti A, Kräusslich HG, Martinez-Picado J. 2014. HIV-1 capture and transmission by dendritic cells: the role of viral glycolipids and the cellular receptor Siglec-1. PLoS Pathog.10:e1004146.

Raff AB, Woodham AW, Raff LM, Skeate JG, Yan L, Da Silva DM, Schelhaas M, Kast WM. 2013. The evolving field of human papillomavirus receptor research: a review of binding and entry. J Virol.87:6062-72.

Takahashi T, Takano M, Kurebayashi Y, Masuda M, Kawagishi S, Takaguchi M, Yamanaka T, Minami A, Otsubo T, Ikeda K, Suzuki T. 2014. N-glycolylneuraminic acid on human epithelial cells prevents entry of influenza A viruses that posses N-glycolylneuraminic acid binding ability. J Virol.88:8445-56.

Clifford HD, Richmond P, Khoo SK, Zhang G, Yerkovich ST, Le Souëf PN, Hayden CM. 2011. SLAM and DC-SIGN measles receptor polymorphisms and their impact on antibody and cytokine responses to measles vaccine. Vaccine.29:5407-13.




DOI: http://dx.doi.org/10.18103/imr.v2i8.189

Refbacks

  • There are currently no refbacks.
Copyright 2016. All rights reserved.