The human and Drosophila ERH are functionally equivalent: Evidence from transgenic studies.

Stuart Tsubota

Abstract


The enhancer of rudimentary, e(r), gene encodes a small highly conserved protein, enhancer of rudimentary homolog (ERH), which has been shown to have a regulatory function in cell division, Notch signaling, and cancer progression.  Human and Drosophila ERH, both 104 amino acids in length, are 76% identical and 84% similar.  The high sequence identity translates into nearly identical tertiary structures.  Previous studies on the expression of the human and Drosophila e(r) genes reveal that the two genes are similarly regulated.  Data in the present study using an e(r)-eGFP reporter gene confirm these results, showing a high expression of the reporter in ovaries, testes, and brain. The high structural and regulatory conservation of e(r) and ERH argue that human and Drosophila ERH may be biochemically and functionally equivalent.  To test this hypothesis, a chimeric transgene containing the Drosophila e(r) non-coding regions and the human e(r) coding region was constructed and used to establish transgenic Drosophila stocks.  This transgene can rescue all of the mutant phenotypes of an e(r) deletion, and Drosophila stocks in which the fly ERH has been replaced with the human ERH are fully healthy and viable.  These studies demonstrate that the human and Drosophila ERH are functionally equivalent, suggesting that studies on the activity of the human ERH can be done in Drosophila, where a multitude of genetic and developmental tools are available.


Keywords


ERH; enhancer of rudimentary; cancer; Drosophila

Full Text:

 Subscribers Only

References


Tsubota, S. I. & Schedl, P. (1986). Hybrid dysgenesis-induced revertants of insertions at the 5‘end of the rudimentary gene in Drosophila melanogaster: transposon-induced control mutations. Genetics, 114, 165-182.

Wojcik, E., Murphy, A. M., Fares, H., Dang-Vu, K., & Tsubota, S. I. (1994). Enhancer of rudimentaryp1, e(r)p1, a highly conserved enhancer of the rudimentary gene. Genetics, 138, 1163-1170.

Roykhman, M., Ibach, S., Harding, D., Wolff, B., Vowels, M., Gelsthorpe, M. E., . . . Tsubota, S. I. (2007). The generation and analysis of deficiencies within a small genomic region on the X chromosome of Drosophila melanogaster containing two genes, enhancer of rudimentary and CG15352. Fly, 1, 245-250.

Tsubota, S. I., Vogel, A. C., Phillips, A. C., Ibach, S. M., Weber, N. K., Kostrzebski, M. A., & Spencer, S. A. (2011). Interactions between enhancer of rudimentary and Notch and deltex reveal a regulatory function of enhancer of rudimentary in the Notch signaling pathway in Drosophila melanogaster. Fly, 5, 1-10.

Knoblich, J. A., Sauer, K., Jones, L., Richardson, H., Saint, R., & Lehner, C. F. (1994). Cyclin E controls S phase progression and its down-regulation during Drosophila embryogenesis is required for the arrest of cell proliferation. Cell, 77, 107-120.

Hao, X. F., Alphey, L., Bandara, L. R., Lam, E.W.-F., Glover, D., & La Thangue, N. B. (1995). Functional conservation of the cell cycle-regulating transcription factor DRTF1/E2F and its pathway of control in Drosophila melanogaster. J Cell Sci, 108, 2945-2954.

Rawls, J. M. & Fristrom, J. (1975). A complex genetic locus that controls the first three steps of pyrimidine biosynthesis in Drosophila. Nature, 255, 738-740.

Aoki, T. & Weber, G. (1981). Carbamoyl phosphate synthetase (glutamine hydrolyzing): increased activity in cancer cells. Science, 212, 463-465.

Aoki, T., Morris, H., & Weber, G. (1982). Regulatory properties and behavior of activity of carbamoyl phosphate synthetase (glutamine hydrolyzing) in normal and proliferating tissues. J Biol Chem, 257, 432-438.

Rao, G. & Davidson, J. (1988). CAD gene expression in serum-starved and serum-stimulated hamster cell. DNA, 7, 423-432.

Zafrakas, M., Losen, I., Knüchel, R. & Dahl, E. (2008). Enhancer of the rudimentary gene homologue (ERH) expression pattern in sporadic human breast cancer and normal breast tissue. BMC Cancer, 8, 145. DOI: 10.1186/1471-2407-8-145.

Weng, M. T., Lee, J. H., Wei, S. C., Li, Q., Shahamatdar, S., Hsu, D., . . . Luo, J. (2012). Evolutionarily conserved protein ERH controls CENP-E mRNA splicing and is required for the survival of KRAS mutant cancer cells. Proc Natl Acad Sci USA, 109, E3659–E3667.

Marcotte, R., Brown, K. R., Suarez F., Sayad, A., Karamboulas, K., Krzyzanowski, P. M., . . . Moffat, J. (2011). Essential gene profiles in breast, pancreatic, and ovarian cancer cells. Cancer Discovery, 2, 172-189.

Bouma, G. J., Affourtit, J. P., Bult, C. J., & Eicher, E. M. (2007). Transcriptional profile of mouse pre-granulosa and Sertoli cells isolated from early-differentiated fetal gonads. Gene Expr Patterns, 7, 113-23.

ERH - various normal tissues. https://www.ncbi.nlm.nih.gov/geoprofiles/47380842

Isomura, M., Okui, K., Fujiwara, T., Shin, S., & Nakamura, Y. (1996). Cloning and mapping of a novel human cDNA homologous to DROER, the enhancer of the Drosophila melanogaster rudimentary gene. Genomics, 32, 125–127.

Gelsthorpe, M., Pulumati, M., McCallum, C., Dang-Vu, K., & Tsubota, S. I. (1997) The putative cell cycle gene, enhancer of rudimentary, encodes a highly conserved protein found in plants and animals. Gene, 186, 189-195.

Arai, R., Kukimoto-Niino, M., Uda-Tochio, H., Morita, S., Uchikubo-Kamo, T., Akasaka, R., . . . Yokoyama, S. (2005). Crystal structure of an enhancer of rudimentary homolog (ERH) at 2.1 Å resolution. Protein Sci, 14, 1888–1893.

Wan, C., Tempel, W., Liu, Z. J., Wang, B. C., & Rose, R. B. (2005). Structure of the conserved transcriptional repressor enhancer of rudimentary homolog. Biochemistry, 44, 5017–5023.

Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., . . . Schwede, T. (2014). SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research, 42 (W1), W252-W258, doi: 10.1093/nar/gku340

Gelsthorpe, M. E., Tan, Z., Phillips, A., Eissenberg, J. C., Miller, A., Wallace, J., & Tsubota S. I. (2006). Regulation of the Drosophila melanogaster protein, Enhancer of Rudimentary, by casein kinase II. Genetics, 174, 265-270.

Berleth, T., Burri, M., Thoma, G., Bopp, D., Richstein, S.,Frigerio, G., Noll, M., & Nüsslein-Volhard, C. (1988). The role of localization of bicoid RNA in organizing the anterior pattern of the Drosophila embryo. EMBO J, 7, 1749–1756.

Ephrussi, A., Dickinson, L. K., & Lehmann, R. (1991). Oskar organizes the germ plasm and directs localization of the posterior determinant nanos. Cell, 66, 37–50.

Fuller, M. (1992). Spermatogenesis. In M. Bate and A. Martinez Arias (Eds.), The Development of Drosophila melanogaster (pp. 71-147). Plainview, NY: CSHL Press.

Sutherland, J. M., Sobinoff, A. P., Fraser, B. A., Redgrove, K. A., Davidson, T.-L., Siddall, N. A., . . . McLaughlin, E. A. (2015). RNA binding protein Musashi-1 directly targets Msi2 and Erh during early testis germ cell development and interacts with IPO5 upon translocation to the nucleus. The FASEB Journal, 29, 2759-2768.

Wagh, D. A., Rasse, T. M., Asan, E., Hofbauer, A., Schwenkert, I., Dürrbeck, H., . . . Buchner, E. (2006). Bruchpilot, a protein with homology to ELKS/CAST, is required for structural integrity and function of synaptic active zones in Drosophila. Neuron, 49, 833-44.

Smyk, A., Szuminska, M., Uniewicz, K. A., Graves, L. M., & Kozlowski, P. (2006). Human enhancer of rudimentary is a molecular partner of PDIP46/SKAR, a protein interacting with DNA polymerase δ and S6K1 and regulating cell growth. FEBS J, 273, 4728-4741.

Phillips, A. (2005). Genetic and Biochemical Studies of Enhancer of Rudimentary to Elucidate Protein Function. (Unpublished doctoral dissertaion). Saint Louis University, St. Louis, MO, USA.




DOI: http://dx.doi.org/10.18103/imr.v2i8.154

Refbacks

  • There are currently no refbacks.
Copyright 2016. All rights reserved.