Temporal prediction of the arrival point of a moving target

Ryo Koshizawa

Abstract


Coincidence-anticipation timing (CAT), a form of temporal prediction, is necessary not only in sports, but in many everyday situations. This review summarizes temporal prediction of a moving target at an arrival point in terms of both task performance and the functional properties of the cerebral cortex during CAT. In terms of CAT task performance, temporal accuracy during a CAT task depends on both the specific task conditions, and individual participant characteristics or conditions that might affect information processing in the cerebral cortex. In terms of the functional properties of the cerebral cortex during CAT, as it is possible to continuously gaze at a moving target to a non-occluded arrival point, participants need only to ascertain its velocity, which relies mainly upon the functional properties of the parietal. However, as it is impossible to continuously gaze at the moving target when the arrival point is occluded, participants need to transfer from processing the visual information gained during the visible section of movement to predicting the target’s movement in the occluded section, which relies mainly upon the functional properties of the premotor. In addition, the premotor mainly contribute toward facilitation of information processing by training in the CAT task. Future establishment of a strategy for accurate temporal prediction of moving targets, informed by further studies in CAT tasks, might allow for more accurate temporal prediction to be made, even without formal training.


Keywords


temporal prediction; coincidence-anticipation timing (CAT); parietal; premotor

Full Text:

 Subscribers Only

References


Akpinar S, Devrilmez E, Kirazci S (2012) Coincidence-anticipation timing requirements are different in racket sports. Perceptual and motor skills 115(2): 581-593

Benguigui N, Broderick M, Ripoll H (2004) Age differences in estimating arrival-time. Neuroscience letters 369(3): 197-202

Christensen CL, Payne VG, Wughalter EH, Van JH, Henehan M, Jones R (2003) Physical activity, physiological, and psychomotor performance: A study of variously active older adult men. Research Quarterly for exercise and Sport 74(2): 136-142

Coull JT, Nobre AC (2008) Dissociating explicit timing from temporal expectation with fMRI. Current opinion in neurobiology 18(2): 137-144

Duncan M, Smith M, Lyons M (2013) The effect of exercise intensity on coincidence anticipation performance at different stimulus speeds. European journal of sport science 13(5): 559-566

Duncan MJ, Stanley M, Smith M, Price MJ, Leddington Wright S (2015) Coincidence anticipation timing performance during an acute bout of brisk walking in older adults: effect of stimulus speed. Neural plasticity: 1-8

Duncan MJ, Smith M, Bryant E, Eyre E, Cook K, Hankey J, Tallis J, Clarke N, Jones MV (2016) Effects of increasing and decreasing physiological arousal on anticipation timing performance during competition and practice. European journal of sport science 16(1): 27-35

Fleury M, Bard C (1985) Age, stimulus velocity and task complexity as determiners of coincident timing behaviour. Journal of Human Movement Studies 11: 305-317

Goodgold-Evans SA (1991) Cognitive strategies during coincident timing tasks. Physical Therapy Journal 71(3): 236-243

Holth M, van der Meer AL, van der Weel FR (2013) Combining findings from gaze and electroencephalography recordings to study timing in a visual tracking task. NeuroReport 24(17): 968-972

Isaacs LD (1990) Effects of angle of approach on coincidence-anticipation timing within a two target display. Journal of Human Movement Studies 19(4): 171-179

Koshizawa R, Mori A, Oki K, Ozawa T, Takayose M, Minakawa TN (2013) Beta band patterns in the visible and masked sections of the coincidence-anticipation timing task. NeuroReport 24(1): 10-15

Koshizawa R, Mori A, Oki K, Takayose M, Minakawa NT (2014) Effects of training the coincidence-anticipation timing task on response time and activity in the cortical region. NeuroReport 25(7): 527-531

Millslagle D (2004) Coincidence anticipation and dynamic visual acuity in young adolescents. Perceptual and motor skills 99: 1147-1156

Payne VG (1986) The effects of stimulus runway length on coincidence-anticipation timing performance. Journal of Human Movement Studies 12(6): 289-295

Payne VG (1987) Effects of Angle of stimulus approach on coincidence-anticipation timing performance. Journal of Human Movement Studies 13(8): 383-390

Payne VG (1988) Effects of direction of stimulus approach, eye dominance, and gender on coincidence-anticipation timing performance. Journal of Human Movement Studies 15(1): 17-25

Payne VG, Michael D (1990) Effects of location of stimulus occlusion, stimulus velocity, and gender on coincidence-anticipation timing performance. Journal of Human Movement Studies 18(5): 243-250

Sanders G (2011) Sex differences in coincidence-anticipation timing (CAT): A review. Perceptual and motor skills 112(1): 61-90

Setogawa S, Maruyama A, Nuruki A, Maeda M, Yunokuchi K (2011) The effect of transcranial magnetic stimulation on timing of a coincidence-anticipation timing task. IEICE Technical Report ME and Bio Cybernetics 110(399): 55-58

Rao SM, Mayer AR, Harrington DL (2001) The evolution of brain activation during temporal processing. Nature neuroscience 4(3): 317-323

Ripoll H, Latiri I (1997) Effect of expertise on coincident-timing accuracy in a fast ball game. Journal of Sports Sciences 15(6): 573-580




DOI: http://dx.doi.org/10.18103/imr.v2i8.145

Refbacks

  • There are currently no refbacks.
Copyright 2016. All rights reserved.