Novel cell line and animal model for human biliary tract cancer

Kenta Shinozaki, Tetsuo Ajiki, Sae Murakami, Taku Matsumoto, Masayuki Akita, Kazuya Shimizu, Yuichi Hori

Abstract


Biliary tract cancer still has a poor prognosis with approximately 8,000 cases reported annually in USA. The most promising therapy for the patients with BTC is surgical resection. Chemotherapy is also significant to improve the prognosis, but the available chemotherapeutic agents and anti-cancer effects are limited so far. Thus, novel anti-cancer drugs and regimens are urgent issue. We established a novel cell line from human intraductal papillary neoplasm of the bile duct, which is a novel biliary tract malignant entity. We also developed an orthotopic engraft model by inoculating human gallbladder cancer cells into nude mice. In this review, we summarized characteristics of a novel cell line and an animal model of human BTC.


Keywords


biliary tract cancer; cell line; animal model; intraductal papillary neoplasm of the bile duct (IPNB)

Full Text:

PDF

References


Chan E. and Berlin J. Biliary tract cancers: understudied and poorly understood. J Clin Oncol. 2015;33:1845-1848.

Mita Y., Ajiki T., Kamigaki T., Okazaki T., Hori H., Horiuchi H., et al. Antitumor effect of gemcitabine on orthotopically inoculated human gallbladder cancer cells in nude mice. Ann Surg Oncol. 2007;14:1374-1380.

Valle J., Wasan H., Palmer D. H., Cunningham D., Anthoney A., Maraveyas A., et al. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med. 2010;362:1273-1281.

Valle J. W., Furuse J., Jitlal M., Beare S., Mizuno N., Wasan H., et al. Cisplatin and gemcitabine for advanced biliary tract cancer: a meta-analysis of two randomised trials. Ann Oncol. 2014;25:391-398.

Iemura A., Maruiwa M., Yano H., and Kojiro M. A new human cholangiocellular carcinoma cell line (KMC-1). J Hepatol. 1992;15:288-298.

Miyagiwa M., Ichida T., Tokiwa T., Sato J., and Sasaki H. A new human cholangiocellular carcinoma cell line (HuCC-T1) producing carbohydrate antigen 19/9 in serum-free medium. In Vitro Cell Dev Biol. 1989;25:503-510.

Murakami S., Ajiki T., Hori Y., Okazaki T., Fukumoto T., and Ku Y. Establishment of a novel cell line from intraductal papillary neoplasm of the bile duct. Anticancer Res. 2014;34:2203-2209.

Sekine S., Shimada Y., Nagata T., Moriyama M., Omura T., Yoshioka I., et al. Establishment and characterization of a new human gallbladder carcinoma cell line. Anticancer Res. 2012;32:3211-3218.

Yamada N., Chung Y., Ohtani H., Ikeda T., Onoda N., Sawada T., et al. Establishment and characterization of a new human gallbladder carcinoma cell line (OCUG-1) producing TA-4. Int J Oncol. 1997;10:1251-1255.

Yano H., Maruiwa M., Iemura A., Mizoguchi A., and Kojiro M. Establishment and characterization of a new human extrahepatic bile duct carcinoma cell line (KMBC). Cancer. 1992;69:1664-1673.

Homma S., Hasumura S., Nagamori S., and Kameda H. Establishment and characterization of a human gall bladder carcinoma cell line NOZ. Hum Cell. 1988;1:95-97.

Shimizu K., Chiba S., and Hori Y. Identification of a novel subpopulation of tumor-initiating cells from gemcitabine-resistant pancreatic ductal adenocarcinoma patients. PLoS One. 2013;8:e81283.

Zen Y., Jang K. T., Ahn S., Kim D. H., Choi D. W., Choi S. H., et al. Intraductal papillary neoplasms and mucinous cystic neoplasms of the hepatobiliary system: demographic differences between Asian and Western populations, and comparison with pancreatic counterparts. Histopathology. 2014;65:164-173.

Ohtsubo I., Ajiki T., Hori Y., Murakami S., Shimizu K., Itoh T., et al. Distinctive expression of CD133 between intraductal papillary neoplasms of the bile duct and bile duct adenocarcinomas. Hepatol Res. 2012;42:574-582.

Shimizu K., Itoh T., Shimizu M., Ku Y., and Hori Y. CD133 expression pattern distinguishes intraductal papillary mucinous neoplasms from ductal adenocarcinomas of the pancreas. Pancreas. 2009;38:e207-214.

Ku J. L., Yoon K. A., Kim I. J., Kim W. H., Jang J. Y., Suh K. S., et al. Establishment and characterisation of six human biliary tract cancer cell lines. Br J Cancer. 2002;87:187-193.

Ojima H., Yoshikawa D., Ino Y., Shimizu H., Miyamoto M., Kokubu A., et al. Establishment of six new human biliary tract carcinoma cell lines and identification of MAGEH1 as a candidate biomarker for predicting the efficacy of gemcitabine treatment. Cancer Sci. 2010;101:882-888.

Wang J., Li L., Zhang K., Yu Y., Li B., Li J., et al. Characterization of two novel cell lines with distinct heterogeneity derived from a single human bile duct carcinoma. PLoS One. 2013;8:e54377.

Wu Q., Kiguchi K., Kawamoto T., Ajiki T., Traag J., Carbajal S., et al. Therapeutic effect of rapamycin on gallbladder cancer in a transgenic mouse model. Cancer Res. 2007;67:3794-3800.

Kitamura T., Connolly K., Ruffino L., Ajiki T., Lueckgen A., DiGiovanni J., et al. The therapeutic effect of histone deacetylase inhibitor PCI-24781 on gallbladder carcinoma in BK5.erbB2 mice. J Hepatol. 2012;57:84-91.

Saha S. K., Parachoniak C. A., Ghanta K. S., Fitamant J., Ross K. N., Najem M. S., et al. Mutant IDH inhibits HNF-4alpha to block hepatocyte differentiation and promote biliary cancer. Nature. 2014;513:110-114.

Horiuchi H., Kawamata H., Fujimori T., and Kuroda Y. A MEK inhibitor (U0126) prolongs survival in nude mice bearing human gallbladder cancer cells with K-ras mutation: analysis in a novel orthotopic inoculation model. Int J Oncol. 2003;23:957-963.

Hoffman R. M. Patient-derived orthotopic xenografts: better mimic of metastasis than subcutaneous xenografts. Nat Rev Cancer. 2015;15:451-452.




DOI: http://dx.doi.org/10.18103/imr.v1i1.13

Refbacks

  • There are currently no refbacks.
Copyright 2016. All rights reserved.