Amyloid Structure and Properties and Its Relation to Human Diseases

Author

Natalia Lisitza

MCPHS University, Brigham and Women's Hospital, Harvard Medical School

nlisitza@partners.org

Abstract

Amyloid – a fibrillar, cross β -sheet quaternary structure –was first discovered and associated with a great variety of human diseases (Alzheimer's, Parkinson's, prion, diabetes, cataracts, etc.). It is believed that the misfolding and aggregation of amyloid proteins are responsible for the appearance and progression of these diseases. Protein aggregation is a highly complex process resulting in a variety of aggregates with different structures and morphologies. Oligomeric protein aggregates (amyloid oligomers) are formed as both intermediates and final products of the aggregation process. They are believed to play an important role in many protein aggregation-related diseases, and many of them are highly cytotoxic. Due to their instability and structural heterogeneity, information about structure, mechanism of formation, and physiological effects of amyloid oligomers is sparse. Here we review the molecular properties of amyloid proteins and relate them to the pathological conditions and the appearance of various diseases. We show how the structure of the amyloid protein at different hierarchical levels (from backbone to fibrills) is representative to the pathological changes that appear at the disease and how it can be potentially be employed to monitor the disease progression. We also review the cytotoxicity of the amyloid proteins and discuss how it might be related to the structure. In conclusion, we delineate the intervention strategies that prevent amyloid formation.

Introduction

Misfolding and aggregation of polypeptides and proteins is a central pathological and biochemical event shared by many neurodegenerative disorders, s such as Parkinson's, Alzheimer's, Huntington's diseases, as well as other human diseases, such as prion diseases, type II diabetes and systemic amyloidosis¹⁻³. In addition, protein aggregates are believed to be involved in several physiological processes such as hormone storage⁴ and memory formation⁵⁻⁷. Furthermore, many biologically important proteins act in a form of specific homo- or hetero-oligomers.

Protein aggregates are usually either classified as amyloid fibrils (structures in which the polypeptides are organized into cross- β sheets), amorphous aggregates, or aggregates often soluble generically described as amyloid oligomers. Amyloid oligomers are defined as soluble nonmonomeric structures that appear as intermediates or final products in the process of protein aggregation lacking one or more of the hallmarks of fibrillar structure. They are highly heterogeneous in size, structure, stability and morphology. Here we will describe amyloid oligomers based on their major properties.

Structure of Amyloid Fibers.

I. Structure of Amyloid Spine

Amyloid is a fibrous quaternary structure formed by the assembly of protein or peptide monomers into intermolecularly hydrogen bonded β -sheets that display the cross- β fiber diffraction pattern as shown in Figure $1A^{1,8}$. In amyloid state, the elongated fibers are formed, with spines consisting of many-stranded β sheets; amyloid fibers share a common "cross- β " spine.

Determining the atomic details of the cross- β spine is complicated since the limited order of fibrils presents challenges to crystallographic, nuclear magnetic resonance (NMR), and electron microscopy (EM) methods. But important features have gradually emerged from studies by solidstate NMR^{9,10}, model-building constrained by X-ray fiber and powder diffraction^{11,12}, site directed spin labeling¹³⁻¹⁶, cryo-EM, scanning mutagenesis¹⁷, and single-crystal X-ray diffraction¹⁸. The most general points to emerge are that

- In all amyloid fibers, the strongest repeating feature is a set of β sheets that are parallel to the fibril axis, with their extended strands near perpendicular to the axis.
- The β sheets can be either parallel or antiparallel, that is, adjacent hydrogen-bonded β strands within a sheet can run in the same direction or in opposite directions.
- 3. The sheets are usual "in register," meaning that strands align with each other such that identical side chains are on top of one another along the fibril axis. In parallel sheets, identical side chains are separated by an interstrand distance of 4.8 Å (Figure 1), and in antiparallel sheets, they are separated by 2×4.8 Å= 9.6 Å.

Figure 1. Properties of Amyloid Fibers (adopted from Eisenberg and Jucker, 2010; Nelson et al., 2005) (A) The characteristic cross- β diffraction pattern observed when X-rays are directed on amyloid fibers. The diffuse reflection at 4.8 Å spacing along the meridian (vertical) shows extended protein chains running roughly perpendicular to the fibril and spaced 4.8 Å apart. The even more diffuse reflection at ~10 Å spacing along the equator (horizontal) shows that the extended chains are organized into sheets spaced ~10 Å apart. For less well-oriented fibrils, both reflections blur into circular rings.

(B) The steric-zipper structure of the sequence segment GNNQQNY from the yeast prion Sup35. Five layers of b strands are shown of the tens of thousands in a typical fibril or microcrystal. The front sheet shows the protein backbones of the strands as gray arrows; the back sheet is in purple. Protruding from each sheet are the sidechains. The arrow marks the fibril axis.

(C) The two interdigitating b sheets are viewed down the axis. Water molecules, shown by red + signs are excluded from the tight interface between the sheets. Red carbonyl groups and blue amine groups form hydrogen bonds up and down between the layers of the sheet (Nelson et al., 2005).

The architecture of at least the simplest cross- β amyloid spines has been clarified by determining short segments of amyloid-forming proteins¹⁹⁻²³. The segments examined are those that seem to be the adhesive parts of amyloid proteins. In isolation from the rest of the protein, they form microcrystals and related fibers with morphological similarity to fibers of the entire parent proteins²⁴. The atomic structures of the microcrystals reveal that the motif of the amyloid protofilament consists of a pair of β sheets that run the length of the fiber-like crystals (Figure 1B). Each sheet is a standard Pauling- Corey β sheet, in which each strand is hydrogen bonded to the strand above and below it through its backbone amide groups. When the side chains contain amides (glutamine and asparagine), those amides also form hydrogen bonds to the identical residue in the strands above and below. This creates parallel arrays of hydrogen bonds running along the fiber axis. The electrostatic interactions of all of these aligned hydrogen bonds mutually polarize one another, producing hydrogen bonds even stronger than those in ice^{25} . The stability of such interdigitated β sheets explains the persistence of amyloid fibers and prions. Within the protofilament, the side chains emanating from the two sheets are tightly interdigitated, as shown in Figure 1C, like the teeth of a zipper. The interface between the sheets is devoid of water, and hence this motif has been termed the "dry steric zipper." Dozens of atomic structures of dry steric zippers have been determined by X-

ray crystallography and share the following properties:

- 1. Steric zippers form from selfcomplementary amino acid sequences, in which their sidechains can mutually interdigitate. The sequences can be polar or non-polar, with large side chains or small, but they fit together in complementary fashion.
- 2. Steric zippers have dry interfaces between the two sheets. Thus, the hydrophobic effect contributes to amyloid stability, as does the strong hydrogen bonding.
- 3. The β strands are most often in register, maximizing interstrand hydrogen bonding and permitting stacking of glutamine (Gln), asparagine (Asn), and tyrosine (Tyr) residues. Although all steric zippers are expected to be formed from complementary sequences, the sequences do not need to be selfcomplementary. There is strong from evidence solid-state **NMR** studies 26,27 that in A β , some close interactions are between b strands that differ in sequence (Figure 2). Such "heterosteric zippers" have not yet been observed in X-ray crystal structures.

Figure 2. Models for Amyloid Fibrils Larger than a Single Steric-Zipper Spine (adopted from Eisenberg and Jucker, 2010)

(A) Model for A β 1-40 based on solid-state NMR data with additional constrains from electron microscopy (Tycko, 2011). The view is down the fibril axis, showing two molecules of A β , each with a U turn or " β arch." Where the green segments of the two molecules abut, they appear to form a homosteric zipper, and a heterozipper could exist between the two arms of each U. Both types of steric zipper need to be confirmed by higher-resolution structures.

(B) A proposed structure for longer amyloid proteins is a "superpleated b structure" (Kajava et al., 2010), in which the protein chain forms several U turns/ β arches. The view of the upper diagram is down the fibril axis; the view of the lower is perpendicular to the fibril axis. In the lower diagram, each protein chain is hydrogen bonded to the ones above and below. Heterozippers may exist between pairs of differently colored β strands. This type of structure has been proposed for several proteins in the amyloid state including Ure2p, Sup35p, and α -synuclein.

(C) A model for a designed amyloid of ribonuclease A with ten glutamine residue inserted between the core and C-terminal domains (Sambashivan et al., 2005) based on X-ray and electron microscopy data and steric constraints. The view is perpendicular to a cut-away of the fibril. The twisting steric zipper can be seen at the center. Globular subunits of ribonuclease A, which are essentially in their native conformation, are at the periphery. The amyloid-like fibrils of this designed amyloid show enzymatic activity, confirming that ribonuclease molecules retain native-like structure.

The most common sheet-to-sheet arrangement for steric zippers is face to face (Figure 1B), but other arrangements occur (Figure 3). In these other arrangements, the two sheets can be face to back (classes 2 and 4), pack with opposite edges up rather than

Copyright 2020 Internal Medicine Review. All Rights Reserved. Volume 6, Issue 1.

both edges up (class 4), or contain antiparallel strands (classes 5–8), rather than

parallel strands (classes 1-4)²¹. To date, no examples in class 3 have been observed.

Figure 3. Steric-Zipper Protofilaments (adopted from Eisenberg and Jucker, 2010)

Twenty-eight atomic structures of steric-zipper protofilaments from amyloid-forming proteins, determined by X-ray diffraction. All are viewed projected down the protofilament axis, revealing the two sheets (one ivory and one blue) with their interdigitated sidechains. Selected zippers are also viewed perpendicular to the protofilament axis, with five layers of β strands shown with backbones as arrows. Water molecules are shown as aqua spheres; notice their absence from the interfaces between the paired sheets.

Some amyloid spines are more complex than single steric zippers. For instance, several different steric zippers all formed by the same protein can occur in the spine. In fact some 13 different steric zippers have been found for the 42-residue sequence of $A\beta^{28}$. Many proteins, including have several potential steric zipper-forming segments within their sequences. Thus, Lewandowski et al.²⁹ provide solid-state NMR evidence that fibers of the yeast prion Sup25 contain three distinct steric zippers (one is shown in Figure 1B).

A second source of increased complexity is the likelihood of hetero-zippers formed from cross-complementary sheets. Heterozippers have been found by solid-state NMR³⁰

(Figure 4). This structure, termed a solenoid by its discoverers, consists of a stack of twolayer protein loops. Each loop contains two extended strands with their side chains interdigitating in a similar manner as those in a steric zipper. Each molecule of contributes two such loops that stack on top of each other. This pair of loops then stacks on top of, and beneath, pairs of loops from its adjacent molecules in the fiber. The entire structure is amyloid like. Heterozippers probably are also found in spontaneous aggregates of proteins, such as those of $A\beta$, but they have not yet been fully defined at high resolution.

Figure 4. Structure of a Heterozipper (adopted from Eisenberg and Jucker, 2010; Wasmer et al., 2008) The solid-state NMR-derived structure of Het-s shows heterozippers.

(A) The protein chain of each molecule (in a single color) contains six β strands, organized in double loops. The double loops of adjacent molecules sit on top of one another, hydrogen bonded up and down.

(B) The two layers are shown schematically with sidechains represented as circles. Each layer may be regarded as a hetero-zipper, in which the sidechains of opposing strands interdigitate.

II. Structure of Amyloid Fibrils

Full amyloid fibrils are more complicated than the simple spine structures; some fibrils appear to contain numerous protofilaments that are complex^{29,31}.

The findings about amyloid spines place severe constraints on fibril models. Given that proteins stack in register with strands spaced 4.8 Å along the fibril axis, the rest of the protein must be flattened out so that each

Copyright 2020 Internal Medicine Review. All Rights Reserved. Volume 6, Issue 1.

.

layer is only 4.8 Å high or it must somehow sit at the periphery of the spine, where it may extend more than 4.8 Å to avoid overlap with identical domains. A flattened model for A β is shown in Figure 2A, based on solid state-NMR measurements¹⁰. Each A β molecule makes a U-turn, called a β arch³². For longer proteins, it has been proposed that U turns are linked into a serpentine structure, termed a super-pleated β structure³² (Figure 2B). In a super-pleated β sheet, the entire protein chain is flattened to fit in one 4.8 Å layer of the fibril.

Flattening is not necessary for an amyloidforming protein to retain globular domains. In the model of a designed amyloid of RNase A (Figure 2C), the domains on the periphery of the spine, find space to retain their globular structure³³. For larger globular domains, a greater circumference of the fibril and a longer protein linker to the steric zipper is required. This means that fibers formed from larger proteins would be expected to greater have diameters. Although the spines of amyloid fibers appear similar, fibrils show a great variety of structural complexity.

The observation that amyloid fibrils have spines composed of steric zippers explains why different proteins, when they enter the amyloid state, give fibrils of similar appearance in electron micrographs. The fibrils are all elongated and unbranched, just as their steric-zipper spines. The diameters of the fibrils vary because the lengths of the proteins that form them differ as well as the number of protofibrils that twist around each other to form the fibril. Thus, we would expect that cross-seeding of amyloid fibril formation in which the seed is formed from another, but similar, amyloid fibril is possible. All steric zippers formed from parallel

 β strands have the same repeat – 4.8 Å in the fibril axis direction; similarly, all antiparallel zippers have repeat of 9.6 Å in the fibril axis (Figure 1). If the seeding steric zipper is complementary in shape to a segment of the seeded protein in solution, we could expect a hetero-steric zipper to form and to serve as a nucleus, as has been shown *in vitro* for $A\beta^{34}$.

In human neurodegenerative diseases, the co-existence of more than one amyloid deposit is a common observation. For example, in Parkinson-related diseases, asynuclein and τ -inclusions can occur in the same cell and form common inclusion bodies³⁵. Although cross-seeding provides an attractive explanation for these observations^{35,36}, definitive proof is lacking, and other explanations are possible. For example, two amyloid deposits may simply develop independently of each other or there may be saturable cellular fractions for the removal of misfolded proteins and one aggregated protein may indirectly stimulate aggregation of the others by monopolizing clearance mechanisms. Also, colocalization of two amyloids is only apparent at the lightmicroscopic level and reflects common cellular niches prone to protein aggregation, while at the ultrastructural level, true coaggreagtion of the two amyloids may not occur. Other observations indicate that the interaction of amyloidogenic proteins in human brain can impede, rather than promote, aggregation.For example, cystatin C co-localizes with $A\beta$ plaques in

Alzheimer's disease, but the finding that cystatin C reduces $A\beta$ plaque formation suggests a mechanism of cross-inhibition rather than cross-seeding³⁷.

III. Conformational Structure of Amyloid Strains

Three models for the molecular basis of prion strains and amyloid polymorphs have been proposed on the basis of atomic structures of amyloid-like fibers (Figure 3). The models suggest that strains are based in distinct steric-zipper spines of the associated amyloid fibers. The first model is termed packing polymorphism and is illustrated in Figure 3 by the pairs of zippers connected by double-headed arrows. In packing polymorphism, an amyloid segment packs in two or more distinct ways, producing fibrils with different structures and distinctive properties. The simplest form of packing polymorphism is a registration shift in which the two sheets forming the steric zipper in the second polymorph shift their interdigitation from that in the zipper of the first polymorph. Because the nature and position of the side chains, the outer surface of the fibers differ in the two polymorphs, the properties of the fibers must be different 23,38 . Thus, in packing polymorphism, one sequence forms two or more "conformations."

The second structural model for strains is termed segmental polymorphism. In segmental polymorphism, two or more different segments of an amyloid protein are capable of forming steric-zipper spines. Figure 3 shows two segments from A β that form different steric zippers. Fibrils formed with different steric zipper spines will each have distinctive properties. Proteins particularly rich in different segments able to form steric zippers include $A\beta^{28}$, $IAPP^{23}$ and PrP^{21} .

In a third type of amyloid polymorphism, heterosteric zippers, the zipper is formed from the inter-digitation of non-identical β sheets. Though not yet seen in X-ray structures at the atomic level, heterotypic interactions between sheets are observed in the constrained models derived from solidstate NMR and cyro-EM^{10,16,38}. The existence of such hetero-amyloid spines, in addition to self-complementary spines, greatly increases the number of potential amyloid polymorphs and prion strains. The hypothesis that distinct steric-zipper structures are at the basis of amyloid fiber polymorphism and prion strains is consistent with other observations about steric zippers. Steric zippers can be extremely stable²⁴. Thus, steric zippers share with prion strains "conformations" that robust can conceivably be transmitted from cell to cell or organism to organism. Another similarity between steric zippers and prion strains is that environmental conditions seem to affect the formation of both³⁹. Similarly, the differing steric zippers formed from the same protein segment in Figure 3 were created by incubating the segments under different solution conditions.

IV. Amyloid Morphology

In the brain, $A\beta$ deposits are heterogeneous in histopathological appearance and biochemical composition, both within and among brain regions and patients⁴⁰⁻⁴². Aβ aggregation can occur in association with the vasculature or in the brain parenchyma

as amyloid plaques. Point mutations within the A β sequence can lead to vascular amyloid, amyloid plaques, or both⁴³. Vascular and parenchymal A β deposits differ in the ratio of deposited A β ending at amino acid 40 to A β ending at amino acid 42⁴³. Plus, the A β 40:A β 42 ratio has been linked to different neurotoxicities and clinical Alzheimer's disease onset⁴⁴⁻⁴⁶. In addition, A β displays length variations due to truncations at the N terminus (e.g., A β

starting at residue 3, 11, or 17) and variations in post-translational modifications isomerization, (e.g., pyroglutamyl formation, phosphorylation, or nitration). All these factors can profoundly influence histopathological Αβ aggregation and amyloid^{41,47-50}. A appearance of the predominance of N-truncated and posttranslationally modified $A\beta$ distinguishes Aß deposits in Alzheimer's disease compared to normal $aging^{51,52}$.

Figure 5. Rainbow Amyloid (adopted from Eisenberg and Jucker, 2010; Yamada et al., 1987) Novel amyloid dyes can be used as surrogate probes of the supramolecular structure of protein aggregates. Shown are A β plaques (yellow) and A β amyloid angiopathy (green) in an A β PP-transgenic mouse (carrying the A β PP Swedish and A β PP Dutch mutation). Note the different spectral signatures upon staining with the luminescent conjugated polythiophene tPTAA (bottom left). The image was recorded using a combination of green and red filters. The scale bar represents 20 µm.

Although it remains difficult to study the conformational state of AB in vivo, indirect measures with luminescent conjugated polythiophene probes that detect particular amyloid conformations suggest the occurrence of conformationally distinct AB deposits in brain⁵³ (Figure 5). Different A β morphotypes in the brain may indicate that local factors influence the A β aggregates. They may also represent various stages in the disease⁴² or reflect the templated propagation of conformationally distinct seeds⁵⁴. Although these possibilities are not mutually exclusive, they suggest that the characteristics of prion strains may also apply to multimeric $A\beta$. However, the link between AB conformational variants and distinct clinical subtypes of β amyloidoses is still lacking.

Hetereogeneous amyloid morphotypes are also observed in other amyloidoses. Strikingly, amyloid heterogeneity is associated with the organ tropism (i.e., that the amyloid preferentially deposits in particular organs) and manifestation of $amyloidoses^{55}$. clinical Similarly, length variants of the AA protein characterize two different histopathological AA amyloid patterns in the kidney with distinct clinical phenotypes⁵⁶. In the brain, τ and α synuclein inclusions reveal histopathological heterogeneity that is diagnostic of the various tauopathies and α -synucleinopathies, respectively⁵⁷. Consistently, α -synuclein and τ fibrils in vitro exhibit conformational diversity ^{58,59}. Although recent studies have reported the remarkable transmission of disparate proteopathic lesions, solid evidence for the hypothesis that the heterogeneous disease phenotypes are the result of the prion-like templated conversion of conformationally distinct TTR, AA, τ , and α -synuclein seeds has not been found as yet.

V. Amyloid Toxicity (cited from Eisenberg and Jucker, 2012)

Not all amyloids are toxic. First described in bacteria, fungi, and yeast, and more recently in mammals, amyloids can function in the formation of biofilms, the binding and storage of peptide hormones, the formation of melanin formation, or the launch of an antiviral innate immune response^{4,60-62}. The type of amyloid and the controlled growth conditions may account for the lack of toxicity of so-called functional amyloids^{38,63}. However, most amyloid formation in mammals occurs with aging and is associated with diseases commonly referred to as protein misfolding diseases, aggregation diseases, proteopathies, or, more specifically, amyloid diseases or amyloidoses^{1,64}. An association of a given amyloid with a disease does not necessarily denote causality. However, a causal relationship between the amyloid formation and amyloid toxicity is suggested from familial cases in which a pathogenic mutation leads to an overproduction of the amyloidogenic protein or enhances the propensity of the protein to aggregate. It remains unclear which step of the amyloid formation cascade is toxic, and this step may be different for the various amyloid diseases.

Amyloid toxicity can result from losing the function of a protein or from the sequestration or mislocation of other proteins⁶⁵. For most amyloid diseases, a gain of toxic function remains a favored hypothesis. Despite the longstanding knowledge that amyloids are associated with disease⁶⁶, we still lack a clear understanding of how amyloids lead to dysfunction, aside from the instances in which amyloids disrupt tissue structure and organ function via simple mass action 67,68 . This mass action mode of toxicity may well be the most important one for systemic amyloidoses and for the amyloid associated with the cerebral vessels (cerebral amyloid angiopathy, CAA) (Figure 6). CAA of various types (A β , ADan, British amyloid [ABri], and Cystatin C amyloid

[ACys]) all result in a thickening of the vascular basal lamina, loss of smooth muscle cells, perivascular inflammation, and, eventually, vessel wall rupture and hemorrhages⁶⁹. Similar appearances and toxicities of CAA (independent of the amyloid type) are also seen in A β - and ADan-species^{70,71}. Moreover, correlations between CAA severity and hemorrhage frequency was found in humans and mouse models, suggesting that the mass of amyloid fibrils may be the most important parameter mediating vascular toxicity⁷²⁻⁷⁴.

Figure 6. Histopathology of Cerebral β **Amyloidosis** (adopted from Eisenberg and Jucker, 2010) (A) A β immunostaining (brown) reveals severe cerebral amyloid angiopathy (CAA) in superficial cortical vessels in a human case.

(B) Ultrastructural analysis of $A\beta$ fibrils (af) in the vessel wall of an arteriole with CAA. Note that the amyloid has displaced nearly the entire vascular wall, disrupting normal vessel-neuron communications (b, basal lamina; e, endothelial cells; l, lumen; m, media).

(C) A β immunostaining (brown) of an amyloid plaque in a human Alzheimer's disease case. Note the dense amyloid core and glial nuclei (blue) surrounded by a halo of diffuse A β immunostaining.

(D) Ultrastructure of an A β plaque. Note the dense amyloid core with the amyloid fibrils (af) surrounded by numerous dystrophic neuritis (some are labeled with "dn"). The A β plaque is from an A β PP-transgenic mouse brain due to better tissue preservation compared to postmortem human tissue. Scale bars represent 100 mm (A), 1 mm (B), 50 mm (C), and 5 mm (D).

Other amyloid deposits may not be the predominant toxic entity. In Alzheimer's disease autopsy material, the soluble A β species correlate more strongly with the degree of dementia than does the mass of A β plaques⁷⁵. Indeed, a variety of soluble A β multimeric species (e.g., dimers, timers, dodecamers, and larger oligomers) have been isolated from the Alzheimer's disease brain, and they induce synaptic toxicity and

dysfunction, both in cell culture and when injected into the rodent brain^{76,77}. Similarly, synthetic, multimeric A β appears to be more toxic than A β monomers or fibrils^{75,78,79}, but it is often unclear how the synthetic A β species relate to the *in vivo* counterparts^{80,81}. Also, for τ and α -synuclein, soluble oligomeric species appear to be more toxic than the corresponding amyloid fibrils^{75,82,83}. The physicochemical properties of the toxic oligomeric species are not well understood, and a consistent nomenclature is needed ⁸⁴. It is generally assumed that the greater toxicities of oligomers are mediated by their unique structural features⁸⁵. The higher relative toxicity of small soluble oligomeric species, however, may also mirror the greater diffusion capability of such small aggregates through the tissue and into various compartments. Along the same lines, the relatively lower toxicity of amyloid fibrils may reflect the fact that many of the toxic structural entities of the fibril are buried in the amyloid mass^{75,86}.

For $A\beta$ toxicity, both receptor-mediated nonreceptor-mediated interactions and membrane interactions have been described^{87,88}. The most significant toxicity of $A\beta$ is toward the synapse. This is consistent with the profound loss of synapses in the Alzheimer's disease and the observation that oligometric $A\beta$ species an electrophysiological LTP. inhibit correlate of memory formation⁸⁹. Soluble A β species bind to post-synaptic structures and interact with various putative ligands, such as PrP, NMDA receptor, EphB2, or downstream signaling events⁹⁰⁻⁹⁴, but their in vivo relevance for Alzheimer's disease pathogenesis is still unclear. Non-receptor membrane cytotoxicity for $A\beta$ has been suggested through the insertion of $A\beta$ oligomers into membranes, resulting in membrane disruption, possibly with the formation of cationsensitive ion channels dysregulation and of calcium homeostasis^{87,95}. Similar observations have been made with other oligomeric amyloid intermediates, suggesting that membrane disruption may be more а general mechanism in which amyloidogenic proteins exert their toxicity⁹⁵⁻⁹⁷. For example, $A\beta$ plaques are responsible for local neuritic dystrophy (Figure 6), gliosis, and can eventually lead to disturbed neural network activity^{98,99}. $A\beta$ plaques may also serve as a source of the more toxic and soluble $A\beta$ assemblies, consistent with the view that a dynamic continuum of the various amyloid intermediates, not a given protein entity, elicits toxicity¹⁰⁰⁻¹⁰³.

Mechanisms of Amyloid Fibril Formation

Elucidating the mechanisms of the amyloid fibril formation is fundamental to understand fibrillogenesis and to identify assembly steps that could be therapeutic targets. Influential early investigations promulgated the idea that $A\beta$ assembly was a specific example of the general class of nucleation-dependent polymerization reactions (Figure 7A, B). These reactions comprise a slow nucleation step, producing a "lag phase" during assembly monitoring, followed by a rapid fibril elongation step. Operating within this paradigm, nucleation kn and elongation ke rate constants for $A\beta$ formation were determined¹⁰⁴. fibril However, continuing elucidation of this ostensibly classical polymerization process revealed unexpected complexity in the numbers and types ("on-pathway" or "offpathway" for fibril formation) of assembly paths and the structures.

Protofibrils, Paranuclei, and Monomer Folds

Figure 7C illustrates one pathway of fibril assembly. The penultimate fibril intermediate, the protofibril, was first

identified more than a decade ago^{105} . Protofibrils were described as beaded chains, each bead of which was ~ 5 nm in diameter. The length of these structures generally was < 150 nm. Kinetics and solution-phase AFM experiments showed that protofibrils matured into fibrils¹⁰⁵. To understand how protofibrils forme, methods to determine quantitatively the oligomer size distribution in nascent Aß preparations were developed¹⁰⁶. In A β 42 assembly, these experiments suggested that a pentamer or hexamer, the "paranucleus," was the basic unit of the protofibril and that the beaded chains comprising protofibrils formed by the self-association of paranuclei. To understand the oligomerization process in atomic detail, computer simulations have been done¹⁰⁷. These studies yielded oligomer frequency distributions similar to those determined experimentally, but in addition provided high resolution conformational information. A β 40 oligomers were more compact than Αβ42 oligomers due to increased conformational freedom of the AB42 Ntermini. This suggested that intermolecular interactions among Aβ42 N-termini might C-terminal interactions facilitate the fibril formation. The obligatory for importance of the C-terminus of $A\beta$ in controlling $A\beta$ assembly has also been revealed in experiments involving amino acid substitutions¹⁰⁶. Systematic alterations in residue 41 side chain hydrophobicity showed that Gly or Ala largely eliminated paranucleus formation, whereas amino acids with hydropathic characteristics had no effect. Elimination of the Ala42 side chain blocked paranucleus self-association, whereas insertion of larger apolar side chains facilitated the process. Similar studies examined Met35 polarity. Thus, oxidation of

Met35 had effect A640 no on oligomerization, whereas AB42 paranucleus formation was abolished. Interestingly, the modified Αβ42 peptides oligomerized identically to $A\beta 40$. The relative importance of the C-terminus in controlling AB assembly was also apparent in studies of Αβ40 and $A\beta 42$ peptides containing substitutions linked to familial forms of AD. These substitutions produced oligomers of higher order when substituted in Aβ40 but had little effect on AB42 oligomerization. Removal of N-terminal residues in AB42 had no effect on its oligomer size distribution, whereas truncation of either the N-terminal two or four residues of Aβ40 produced higher-order oligomers. This observation was consistent with the aforementioned simulation data that suggested that collapse of the N-terminus of Aβ40 on the oligomer surface might shield underlying hydrophobic regions of the oligomers that otherwise might interact to form higher-order assemblies¹⁰⁷. In fact, this process was observed in studies of the folding and assembly of urea-denatured $A\beta^{108}$. A β 40 formed an unstable but largely collapsed monomeric species, whereas AB42 existed in a trimeric or tetrameric state¹⁰⁸. The solvent inaccessibility of the Ala21-Ala30 region of A β likely results from the formation of a turn-like structure that folding¹⁰⁹. nucleates monomer This decapeptide region initiallywas identified due to its resistance to proteolysis, a resistance that remained in the isolated decapeptide itself and that allowed NMR and computational determinations of its structure dynamics¹⁰⁹. and Most recently, thermodynamics studies showed that the turn is destabilized by amino acid AD¹¹⁰. substitutions cause that

Destabilization correlates with accelerated $A\beta$ oligomerization and higher-order

assembly and thus provides a mechanistic explanation for these familial forms of AD.

Figure 7. Aβ assembly (adopted from Roychaudhuri et al., 2009)

(A) The sequence of A β 42 is shown in one-letter amino acid code. The side chain charge at neutral pH is color-coded (red, negative; blue, positive).

(B) Nucleation-dependent polymerization, reflecting the unfavorable self-association (rate constant $k_{n+} << k_{n-}$) of X natively folded monomers (in this case, six total) to form a fibril nucleus and the favorable addition ($k_{e+} >> k_{e-}$) of a large indeterminate number of monomers to the nucleus (nascent fibril) during fibril elongation.

(C) A β self-assembly. A β belongs to the class of "natively disordered" proteins, existing in the monomer state as an equilibrium mixture of many conformers. On-pathway assembly requires the formation of a partially folded monomer that self-associates to form a nucleus for fibril elongation, a paranucleus (in this case, containing six monomers). Nucleation of monomer folding is a process distinct from fibril nucleation. Fibril nucleation is unfavorable kinetically (k₂₊ << k₂-), which explains the lag phase of fibrillogenesis experiments, a period during which no fibril formation is apparent. Paranuclei self-associate readily (k₃₊ >> k₃-) to form protofibrils, which are relatively narrow (~5 nm), short (<150 nm), flexible structures. These protofibrils comprise a significant but finite number (*X*) of paranuclei. Maturation of protofibrils through a process that is kinetically favorable (k₄₊ > k₄-) yields classical amyloid-type fibrils (~10-nm diameter, indeterminate (but often >1 µm length). Other assembly pathways produce annular pore-like structures, globular dodecameric (and higher order) structures, and amylospheroids appear to be off-pathway assemblies.

Aβ Assembly and Disease

Thus far, we have discussed basic aspects of the physical biochemistry of $A\beta$ assembly.

However, the most fundamental biological question is, "what is the relationship between $A\beta$ assemblies and AD?" Strong linkage exists between amyloid formation

Copyright 2020 Internal Medicine Review. All Rights Reserved. Volume 6, Issue 1.

per se and disease (for a comprehensive review, see Ref. 111), and this linkage formed, in part, the foundation for the hypothesis," "amyloid cascade which posited that amyloid fibril formation was the key pathogenetic process in AD^{112} . As discussed above. elucidation the of mechanisms of fibril formation unexpectedly revealed a broad range of fibrillar and non-fibrillar structures. Aß oligomers appear to be particularly important because they are potent neurotoxins and are isolable from AD patients, and their concentrations correlate positively with neuropathology in vivo. These facts have produced a fundamental paradigm shift resulting in a revised amyloid cascade hypothesis^{75,113,114} one that posits the primacy of oligometric forms of $A\beta$ in AD causation.

A substantial experimental corpus exists demonstrating that $A\beta$ is neurotoxic⁸⁸. However. it recent advances in characterization of protofibrils allowed more structurally precise definition of $A\beta$ that in turn enabled more precise structureneurotoxicity correlations to be established^{78,115}. An important goal of current research is to better define the mechanisms of this toxicity.

Human Diseases Associated with Protein Aggregation (cited from Chiti and Dobson, 2006)

Many diseases are associated with the formation of extracellular amyloid fibrils or intracellular inclusions with amyloid-like characteristics (for the complete review see Table 1 in Ref.1) along with the specific proteins that in each case are the

predominant components of the deposits. The diseases can be broadly grouped into neurodegenerative conditions, in which aggregation occurs in the brain, nonneuropathic localized amyloidoses, in which aggregation occurs in a single type of tissue other than the brain, and non-neuropathic systemic amyloidoses, in which aggregation occurs in multiple tissues. Some of these conditions. such as Alzheimer's and Parkinson's diseases, are predominantly sporadic, although hereditary forms are well documented. Other conditions, such as the lysozyme and fibrinogen amyloidoses, arise from specific mutations and are hereditary. In addition to sporadic (85%) and hereditary (10%) forms, spongiform encephalopathies can also be transmissible (5%) in humans as well as in other mammals. It has also been found that intravenous injection or oral administration of preformed fibrils from different sources can result in accelerated AA amyloidosis in mice subjected to an inflammatory stimulus^{116,117}. It has therefore been postulated that an environment enriched with fibrillar material could act as a diseases¹¹⁷. risk factor for amyloid Similarly, injection of the recombinant mouse prion protein in the form of amyloidlike fibrils has been reported to generate disease in mice that express the prion protein¹¹⁸. The extracellular proteinaceous deposits found in patients suffering from any of the amyloid diseases have a major protein component that forms the core and then additional associated species, including metal ions, glycol-amino-glycans, the serum amyloid P component, apolipoprotein E, collagen, and many others^{119,120}. Ex vivo fibrils, representing the amyloid core structures, can be isolated from patients, and closely similar fibrils can also be produced

in vitro using natural or recombinant proteins; in this case, mildly denaturing conditions are generally required for their rapid formation, at least for proteins that normally adopt a well-defined folded structure.

The fibrils can be imaged in vitro using transmission electron microscopy (TEM) or atomic force microscopy (AFM). These experiments reveal that the fibrils usually consist of a number (typically 2-6) of protofilaments, each about 2-5 nm in diameter¹²¹. These protofilaments twist together to form ropelike fibrils that are typically 7-13 nm wide^{12,121} or associate laterally to form long ribbons that are 2-5 nm thick and up to 30 nm wide¹²²⁻¹²⁴. X-ray fiber diffraction data have shown that in each individual protofilament the protein or peptide molecules are arranged so that the polypeptide chain forms β -strands that run perpendicular to the long axis of the fibril 12 . The fibrils have the ability to bind specific dyes such as thioflavin T (ThT) and Congo red (CR)¹²⁵, although the specificity of binding of CR to amyloid fibrils and the resulting green birefringence under crosspolarized light has recently been questioned^{126,127}.

The proteins found as intractable aggregates in pathological conditions do not share any obvious sequence identity or structural homology to each other. Considerable heterogeneity also exists as to secondary structure composition or chain length. Interestingly, some amyloid deposits in vivo and fibrils generated in vitro have both been found to include higher-order assemblies, including highly organized species known as spherulites, which can be identified from a characteristic Maltese cross pattern when observed under cross-polarized light ^{128,129}. Such species are also observed in preparations of synthetic polymers, such as polyethylene, a finding consistent with the idea that amyloid fibrils have features analogous to those of classical polymers.

Inhibition of Amyloid Formation (cited from Eisenberg and Jucker, 2012)

It can be accomplished in both chemical and biological interventions.

Chemical Interventions

There are four different approaches to perform chemical intervention

The first approach is to stabilize the structure of the protein soluble form diminishing the rate at which it undergoes conversion to the amyloid state. The pioneering demonstration of this strategy was on TTR¹³⁰. TTR is a homotetramer that carries serum retinol binding protein and thyroid hormones, such as thyroxine. In several amyloid diseases, one of many mutations can destabilize TTR, leading to fibrous deposits in the heart and peripheral nerves. Using structure based design, several potent and specific binders to the TTR hormone pocket have been described that inhibit fibril formation¹³¹. The same strategy could be applied to other amyloid forming proteins that have a stable native structure.

The second approach is to screen for small molecules that disrupt fibril and oligomer formation. Thus, Necula et al.¹³² list 16 screening studies for molecules that inhibit

fibrils of A β , and they go on to study molecules that inhibit formation of A β oligomers. In a recent study using smallmolecule microarrays¹³³, 79 compounds were discovered that rescue cells from cytotoxicity. The authors suggested that the mechanism of the rescue is that a compound can accelerate A β aggregation past an earlyforming toxic oligomer. Screening for compounds that inhibit fibrils of τ is also an active area¹³⁴. Despite this huge effort, no compound for Alzheimer's disease treatment have been reported as yet.

The third approach uses the self-assembling property of amyloid fibers to poison the growth of amyloid fibers with $peptides^{135}$. A biological system which apparently uses this strategy is Het-S, a native inhibitor of the HET-s prion³⁰. Adoption of this principle for chemical design is based on the fact that β sheets are the fundamental structural unit of amyloid fibrils and the fibrils grow by addition of new strands to the β sheets. The fiber is poisoned or "capped" by adding a peptide that acts as a new strand via hydrogen bonding to the sheet at the fibril's growing edge but prevents the subsequent addition of another amyloid molecule. It was shown that the segment of $A\beta$ with sequence aggregation¹³⁶, **KLVFF** inhibits Aβ however, this peptide itself forms stericfibrils²⁸. More zipper recent work emphasizes the modifications the of blocking peptide, to both inhibit fibrillation of the target protein prevent self-fibrillation of the blocker (for review, see Ref.135). Depending on the system, it has been found that blocking fiber formation could either increase or diminish the concentration of toxic oligomers¹³⁵. The protein domain that has been found to inhibit fiber assembly of A β is the N-terminal domain of myelin basic protein¹³⁷.

The fourth approach is to inhibit fiber growth by the structure-based design of peptides targeted to block the ends of fibrils. This approach becomes possible by the determination of the atomic structures of steric zippers and has been shown to be effective for inhibition in vitro of two different amyloid fibers²². Based on the structure of the steric-zipper segment of the τ protein with sequence VQIVYK, an Damino acid inhibitor was designed to cap the ends of VQIVYK fibrils. This 6 residue D peptide was found to inhibit fibrillation of both VQIVYK fibers and constructs of τ . This blocker designed to cap steric zippers also blocks fibrillation of the parent protein. This strengthens the hypothesis that steric zippers form the essential spine of amyloid fibrils.

Biological Interventions

Amyloid formation depends on the concentration of the amyloid-forming proteins. Thus, inhibition of the generation of amyloidogenic proteins or of their precursors is a primary therapeutic strategy. For example, suppression of the inflammatory process responsible for serum amyloid A protein (SAA) overproduction is a therapeutic option for AA amyloid and elimination of В cell clones that immunoglobulin overproduce light chains¹³⁸. Likewise, genetic variability in the expression of amyloidogenic proteins at slightly higher levels than normal may contribute to the risk of amyloidoses¹³⁹. However, because of the incomplete mechanistic understanding of such genetic

variability, no therapeutic strategies to reduce protein expression at the genetic levels have so far been developed.

Some amyloid-forming proteins are derived from longer precursor proteins that need cleavage to become amyloidogenic. The best-known example is ABPP that is sequentially cleaved by β -secretase and γ secretase to release the A β peptide⁴⁷. Secretase inhibitors are currently in clinical trials, but current inhibitors may need refinement to avoid unwanted side effects, i.e., blocking cleavage to other substrates⁴⁷. Other amyloids (e.g., AA, AApoAII, and ACys) also consist of protein fragments of larger precursors; however, it is not always clear whether such fragmentation is necessary for the amyloidoses or whether truncation is a secondary event without physiological significance⁶⁸. While the relationship between post-translational modification of amyloids and disease pathogenesis in general remains ill defined, inhibiting pyroglutamyl formation is pursued as a therapeutic target for Alzheimer's disease¹⁴⁰.

The finding that vaccination of ABPPtransgenic mice can prevent and reduce cerebral β amyloidosis has stimulated the development of antibody-based immunetherapeutics for Alzheimer's disease¹⁴¹. Although mechanistically still unclear, antibodies directed toward Aß gain access to the brain where they bind to soluble and/or deposited $A\beta$ species and promote their degradation. Phagocytosis of microglia as well as other mechanisms have been removal¹⁴¹. proposed for amyloid Subsequent human immune-therapy trials showed also a reduction of $A\beta$ deposits in

brains of Alzheimer's disease patients, as predicted from the preclinical mouse work¹⁴². However, unwanted side effects and lack of cognitive improvements in "immunized" Alzheimer's disease patients must be overcome in future trials by early preventative. therapeutic. rather than interventions^{102,143}. Immunization against other amyloids, such as PrPsc, τ , and α synuclein have also been reported in transgenic mouse models¹⁴⁴⁻¹⁴⁶. Along the same line, immunological depletion (in addition to pharmacological depletion) of serum amyloid P component (SAP) has been developed as a therapeutic strategy. SAP is claimed to stabilize amyloid fibrils and to be associated with most amyloids¹⁴⁷.

Conclusion

Although the research reviewed here, advances rapidly in knowledge of amyloid diseases, it is appropriate to define some of the critical questions for the future work. At the molecular level, we still lack high resolution knowledge of amyloid oligomers in all but the simplest fibers. Recent work has begun to reveal the structural basis of prion strains. Now we need to establish whether the amyloid strains play a physiologically significant role in other amyloid diseases, and, if so, we need the more comprehensive view of the amyloid polymorphism. Furthermore, we need better understanding of the molecular assembly mechanisms from functional proteins to amyloid oligomers and fibers as well the pathways of disassembly.

At the level of cellular biology, we need to learn which biological cofactors stabilize and destabilize amyloid structures, and to

elucidate the metabolic and signaling pathways that regulate degradation and disposal of amyloids. An urgent need is the further development of structural and physiochemical techniques that permit the analysis of aggregated proteins in cells and living tissues, as opposed to extracted or recombinant amyloid. A remaining mystery is the enormously greater potency of seeding by amyloid and prions extracted from tissues compared to recombinant amyloids. Is this greater potency due to undetected biological cofactors in the extracted material, or has the extracted protein been templated into some structure in vivo which the recombinant, apparently identical. material cannot achieve? Can biological factors be discovered which can convert recombinant proteins to forms that are as potent as extracted amyloid?

Another mystery involves the mechanisms and pathways for cellular toxicity of

amyloid. Are there common mechanisms of the toxicities, or the mechanisms differ between systemic and cerebral amyloid diseases? What are the toxic structures? Are oligomers distinct from small fibers, and what accounts for their toxicity? Why can toxicity of PrP be recapitulated in animal models whereas the toxicity of $A\beta$ is comparatively modest? What is different about functional amyloids that render them non-toxic? Finally, the implications for disease of the recently reported experimental transmission of non-prion amyloids need to be established. Are similar or different structures responsible for toxicity and transmission? Can amyloid in the environment seed human diseases, and, if so, what protective measures are necessary? As answers to these questions emerge, a class of diseases that afflict and kill millions will be understood and perhaps controlled preventative therapeutic by and interventions.

Bibliography

1. Chiti, F. and Dobson, C.M. (2006) Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333–366.

2. Mukherjee, A., Morales-Scheihing, D., Butler, P.C. and Soto, C. (2015) Type 2 diabetes as a protein misfolding disease. Trends Mol. Med. 21, 439–449.

3. Verma, M., Vats, A. and Taneja, V. (2015) Toxic species in amyloid disorders: oligomers or mature fibrils. Ann. Indian Acad. Neurol. 18, 138–145.

4. Maji, S.K. et al. (2009) Functional amyloids as natural storage of peptide hormones in pituitary secretory granules. Science 325, 328–332.

5. Si, K., Lindquist, S. and Kandel, E.R. (2003) A neuronal isoform of the aplysia CPEB has prion-like properties. Cell 115, 879–891.

6. Bailey, C.H., Kandel, E.R. and Si, K. (2004). The persistence of long-term memory: a molecular approach to self-sustaining changes in learninginduced synaptic growth. Neuron 44, 49–57.

7. Si, K., Choi, Y.B., White-Grindley, E., Majumdar, A. and Kandel, E.R. (2010) Aplysia CPEB can form prion-like multimers in sensory neurons that contribute to long-term facilitation. Cell 140, 421–435.

8. Eisenberg, D. and Jucker, M. (2012). The Amyloid State of Proteins in Human Diseases. Cell 148, 1188–1203.

9. Benzinger, T.L., Gregory, D.M., Burkoth, T.S., Miller-Auer, H., Lynn, D.G., Botto, R.E., and Meredith, S.C. (1998). Propagating structure of Alzheimer's betaamyloid (10-35) is parallel beta-sheet with residues in exact register. Proc. Natl. Acad. Sci. USA 95, 13407–13412.

10. Tycko, R. (2011). Solid-state NMR studies of amyloid fibril structure. Annu. Rev. Phys. Chem. 62,279–299.

11. Makin, O.S., Atkins, E., Sikorski, P., Johansson, J., and Serpell, L.C. (2005). Molecular basis for amyloid fibril formation and stability. Proc. Natl. Acad. Sci. USA 102, 315–320.

12. Sunde, M., and Blake, C.C. (1998). From the globular to the fibrous state: protein structure and structural conversion in amyloid formation. Q. Rev. Biophys. 31, 1– 39.

13. Serag, A.A., Altenbach, C., Gingery, M., Hubbell, W.L., and Yeates, T.O. (2001). Identification of a subunit interface in transthyretin amyloid fibrils: evidence for self-assembly from oligomeric building blocks. Biochemistry 40, 9089–9096.

14. Török, M., Milton, S., Kayed, R., Wu, P., McIntire, T., Glabe, C.G., and Langen, R. (2002). Structural and dynamic features of Alzheimer's Abeta peptide inamyloid fibrils studied by site-directed spin labeling. J. Biol. Chem. 277, 40810–40815. 15. Jiménez, J.L., Guijarro, J.I., Orlova, E., Zurdo, J., Dobson, C.M., Sunde, M. and Saibil, H.R. (1999). Cryo-electron microscopy structure of an SH3 amyloid fibril and model of the molecular packing. EMBO J. 18, 815–821.

16. Schmidt, M., Sachse, C., Richter, W., Xu, C., Fa[°]ndrich, M., and Grigorieff, N. (2009). Comparison of Alzheimer Abeta(1-40) and Abeta(1-42) amyloid fibrils reveals similar protofilament structures. Proc. Natl. Acad. Sci. USA 106, 19813–19818.

17. Williams, A.D., Portelius, E., Kheterpal, I., Guo, J.T., Cook, K.D., Xu, Y., and Wetzel, R. (2004). Mapping abeta amyloid fibril secondary structure using scanning proline mutagenesis. J. Mol. Biol. 335, 833–842.

18. Nelson, R., Sawaya, M.R., Balbirnie, M., Madsen, A.O., Riekel, C., Grothe, R., and Eisenberg, D. (2005). Structure of the cross-beta spine of amyloid-like fibrils. Nature 435, 773–778.

125. Nilsson MR. 2004. Methods 34:151-60

19. Apostol, M.I., Sawaya, M.R., Cascio, D., and Eisenberg, D. (2010). Crystallographic studies of prion protein (PrP) segments suggest how structural changes encoded by polymorphism at residue 129 modulate susceptibility to human prion disease. J. Biol. Chem. 285, 29671–29675.

20. Ivanova, M.I., Sievers, S.A., Sawaya, M.R., Wall, J.S., and Eisenberg, D. (2009).

Molecular basis for insulin fibril assembly. Proc. Natl. Acad. Sci. USA 106, 18990– 18995.

21. Sawaya, M.R., Sambashivan, S., Nelson, R., Ivanova, M.I., Sievers, S.A., Apostol, M.I., Thompson, M.J., Balbirnie, M., Wiltzius, J.J., McFarlane, H.T., et al. (2007). Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature 447, 453–457.

22. Sievers, S.A., Karanicolas, J., Chang, H.W., Zhao, A., Jiang, L., Zirafi, O., Stevens, J.T., Mu[°]nch, J., Baker, D., and Eisenberg, D. (2011). Structure-based design of non-natural amino-acid inhibitors of amyloid fibril formation. Nature 475, 96– 100.

23. Wiltzius, J.J., Landau, M., Nelson, R., Sawaya, M.R., Apostol, M.I., Goldschmidt, L., Soriaga, A.B., Cascio, D., Rajashankar, K., and Eisenberg, D. (2009). Molecular mechanisms for protein-encoded inheritance. Nat. Struct. Mol. Biol. 16, 973– 978.

24. Balbirnie, M., Grothe, R., and Eisenberg, D.S. (2001). An amyloid-forming peptide from the yeast prion Sup35 reveals a dehydrated beta-sheet structure for amyloid. Proc. Natl. Acad. Sci. USA 98, 2375–2380.

25. Tsemekhman, K., Goldschmidt, L., Eisenberg, D., and Baker, D. (2007). Cooperative hydrogen bonding in amyloid formation. Protein Sci. 16, 761–764. 26. Lührs, T., Ritter, C., Adrian, M., Riek-Loher, D., Bohrmann, B., Do[•] beli, H.,Schubert, D., and Riek, R. (2005). 3D structure of Alzheimer's amyloidbeta (1-42) fibrils. Proc. Natl. Acad. Sci. USA 102, 17342–17347.

27. Petkova, A.T., Ishii, Y., Balbach, J.J., Antzutkin, O.N., Leapman, R.D., Delaglio, F., and Tycko, R. (2002). A structural model for Alzheimer's beta-amyloid fibrils based on experimental constraints from solid state NMR. Proc. Natl. Acad. Sci. USA 99, 16742–16747.

28. Colletier, J.P., Laganowsky, A., Landau, M., Zhao, M., Soriaga, A.B., Goldschmidt, L., Flot, D., Cascio, D., Sawaya, M.R., and Eisenberg, D. (2011). Molecular basis for amyloid-beta polymorphism. Proc. Natl. Acad. Sci. USA 108, 16938–16943.

29. Lewandowski, J.R., van der Wel, P.C., Rigney, M., Grigorieff, N., and Griffin, R.G. (2011). Structural complexity of a composite amyloid fibril. J. Am. Chem. Soc. 133, 14686–14698.

30. Wasmer, C., Lange, A., Van Melckebeke, H., Siemer, A.B., Riek, R., and Meier, B.H. (2008). Amyloid fibrils of the HET-s (218-289) prion form a beta solenoid with a triangular hydrophobic core. Science 319, 1523–1526.

31. White, H.E., Hodgkinson, J.L., Jahn, T.R., Cohen-Krausz, S., Gosal, W.S., Müller, S., Orlova, E.V., Radford, S.E., and Saibil, H.R. (2009). Globular tetramers of beta (2)-microglobulin assemble into elaborate amyloid fibrils. J. Mol. Biol. 389, 48–57.

32. Kajava, A.V., Baxa, U., and Steven, A.C. (2010). Beta arcades: recurring motifs in naturally occurring and disease-related amyloid fibrils. FASEB J. 24, 1311–1319.

33. Sambashivan, S., Liu, Y., Sawaya, M.R., Gingery, M., and Eisenberg, D. (2005). Amyloid-like fibrils of ribonuclease A with three-dimensional domain-swapped and native-like structure. Nature 437, 266–269.

34. Andreetto, E., Yan, L.M., Tatarek-Nossol, M., Velkova, A., Frank, R., and Kapurniotu, A. (2010). Identification of hot regions of the Abeta-IAPP interaction interface as high-affinity binding sites in both cross- and self-association. Angew. Chem. Int. Ed. Engl. 49, 3081–3085.

35. Giasson, B.I., Forman, M.S., Higuchi, M., Golbe, L.I., Graves, C.L., Kotzbauer, P.T., Trojanowski, J.Q., and Lee, V.M. (2003). Initiation and synergistic fibrillization of tau and alpha-synuclein. Science 300, 636–640.

36. Morales, R., Estrada, L.D., Diaz-Espinoza, R., Morales-Scheihing, D., Jara, M.C., Castilla, J., and Soto, C. (2010). Molecular cross talk between misfolded proteins in animal models of Alzheimer's and prion diseases. J. Neurosci. 30, 4528– 4535.

37. Kaeser, S.A., Herzig, M.C., Coomaraswamy, J., Kilger, E., Selenica, M.L., Winkler, D.T., Staufenbiel, M., Levy, E., Grubb, A., and Jucker, M. (2007). Cystatin C modulates cerebral betaamyloidosis. Nat. Genet. 39, 1437–1439.

38. Greenwald, J., and Riek, R. (2010). Biology of amyloid: structure, function, and regulation. Structure 18, 1244–1260.

39. Tanaka, M., Chien, P., Naber, N., Cooke, R., and Weissman, J.S. (2004). Conformational variations in an infectious protein determine prion strain differences. Nature 428, 323–328.

40. Maarouf, C.L., Daugs, I.D., Spina, S., Vidal, R., Kokjohn, T.A., Patton, R.L., Kalback, W.M., Luehrs, D.C., Walker, D.G., E.M., Castan~ 0. et al. (2008).Histopathological and molecular heterogeneity individuals among with associated dementia with Presenilin mutations. Mol. Neurodegener. 3, 20.

41. Tekirian, T.L., Saido, T.C., Markesbery, W.R., Russell, M.J., Wekstein, D.R., Patel, E., and Geddes, J.W. (1998). N-terminal heterogeneity of parenchymal and cerebrovascular Abeta deposits. J. Neuropathol. Exp. Neurol. 57, 76–94.

42. Thal, D.R., Capetillo-Zarate, E., Del Tredici, K., and Braak, H. (2006). The development of amyloid beta protein deposits in the aged brain. Sci Aging Knowledge Environ. 2006, re1.

43. Herzig, M.C., Van Nostrand, W.E., and Jucker, M. (2006). Mechanism of cerebral beta-amyloid angiopathy: murine and cellular models. Brain Pathol. 16, 40–54.

44. Duering, M., Grimm, M.O., Grimm, H.S., Schro⁻⁻ der, J., and Hartmann, T. (2005). Mean age of onset in familial Alzheimer's disease is determined by amyloid beta 42. Neurobiol. Aging 26, 785– 788.

45. Kumar-Singh, S., Theuns, J., Van Broeck, B., Pirici, D., Vennekens, K., Corsmit, E., Cruts, M., Dermaut, B., Wang, R., and Van Broeckhoven, C. (2006). Mean age-of-onset of familial alzheimer disease caused by presenilin mutations correlates with both increased Abeta42 and decreased Abeta40. Hum. Mutat. 27, 686–695.

46. Kuperstein, I., Broersen, K., Benilova, I., Rozenski, J., Jonckheere, W., Debulpaep, M., Vandersteen, A., Segers-Nolten, I., Van Der Werf, K., Subramaniam, V., et al. (2010). Neurotoxicity of Alzheimer's disease Ab peptides is induced by small changes in the Ab42 to Ab40 ratio. EMBO J. 29, 3408–3420.

47. De Strooper, B. (2010). Proteases and proteolysis in Alzheimer disease: amulti-factorial view on the disease process. Physiol. Rev. 90, 465–494.

48. Kumar, S., Rezaei-Ghaleh, N., Terwel, D., Thal, D.R., Richard, M., Hoch, M., Mc Donald, J.M., Wüllner, U., Glebov, K., Heneka, M.T., et al. (2011). Extracellular phosphorylation of the amyloid b-peptide promotes formation of toxic aggregates during the pathogenesis of Alzheimer's disease. EMBO J. 49. Kummer, M.P., Hermes, M., Delekarte, A., Hammerschmidt, T., Kumar, S., Terwel, D., Walter, J., Pape, H.C., König, S., Roeber, S., et al. (2011). Nitration of tyrosine 10 critically enhances amyloid b aggregation and plaque formation. Neuron 71, 833–844.

50. Miravalle, L., Calero, M., Takao, M., Roher, A.E., Ghetti, B., and Vidal, R. (2005). Amino-terminally truncated Abeta peptide species are the main component of cotton wool plaques. Biochemistry 44, 10810–10821.

51. Kuo, Y.M., Kokjohn, T.A., Beach, T.G., Sue, L.I., Brune, D., Lopez, J.C., Kalback, W.M., Abramowski, D., Sturchler-Pierrat, C., Staufenbiel, M., and Roher, A.E. (2001). Comparative analysis of amyloid-beta chemical structure and amyloid plaque morphology of transgenic mouse and Alzheimer's disease brains. J. Biol. Chem. 276, 12991–12998.

52. Piccini, A., Russo, C., Gliozzi, A., Relini, A., Vitali, A., Borghi, R., Giliberto, L., Armirotti, A., D'Arrigo, C., Bachi, A., et al. (2005). beta-amyloid is different in normal aging and in Alzheimer disease. J. Biol. Chem. 280, 34186–34192.

53. Nilsson, K.P., Aslund, A., Berg, I., Nystro[¬] m, S., Konradsson, P., Herland, A., Inganas, O., Stabo-Eeg, F., Lindgren, M., Westermark, G.T., et al. (2007). Imaging distinct conformational states of amyloidbeta fibrils in Alzheimer's disease using novel luminescent probes. ACS Chem. Biol. 2, 553–560.

- 54. Levine, H., 3rd, and Walker, L.C. (2010). Molecular polymorphism of Abeta in, Alzheimer's disease.
- Neurobiol. Aging 31, 542–548.

55. Westermark, G.T., and Westermark, P. (2010). Prion-like aggregates: infectious agents in human disease. Trends Mol. Med. 16, 501–507.

56. Westermark, G.T., Sletten, K., and Westermark, P. (1989). Massive vascular AA-amyloidosis: a histologically and biochemically distinctive subtype of reactive systemic amyloidosis. Scand. J. Immunol. 30, 605–613.

57. Goedert, M., Clavaguera, F., and Tolnay, M. (2010). The propagation of prion-like protein inclusions in neurodegenerative diseases. Trends Neurosci. 33, 317–325.

58. Frost, B., Ollesch, J., Wille, H., and Diamond, M.I. (2009). Conformational diversity of wild-type Tau fibrils specified by templated conformation change. J. Biol. Chem. 284, 3546–3551.

59. Heise, H., Hoyer, W., Becker, S., Andronesi, O.C., Riedel, D., and Baldus, M. (2005). Molecular-level secondary structure, polymorphism, and dynamics of full-length alpha-synuclein fibrils studied by solid-state NMR. Proc. Natl. Acad. Sci. USA 102, 15871–15876.

60. Chapman, M.R., Robinson, L.S., Pinkner, J.S., Roth, R., Heuser, J., Hammar, M., Normark, S., and Hultgren, S.J. (2002). Role of Escherichia coli curli-operons in directing amyloid fiber formation. Science 295, 851–855.

61. Fowler, D.M., Koulov, A.V., Balch, W.E., and Kelly, J.W. (2007). Functional amyloid—from bacteria to humans. Trends Biochem. Sci. 32, 217–224.

62. Hou, F., Sun, L., Zheng, H., Skaug, B., Jiang, Q.X., and Chen, Z.J. (2011). MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell 146, 448–461.

63. Watt, B., Tenza, D., Lemmon, M.A., Kerje, S., Raposo, G., Andersson, L., and Marks, M.S. (2011). Mutations in or near the transmembrane domain alter PMEL amyloid formation from functional to pathogenic. PLoS Genet. 7, e1002286.

64. Selkoe, D.J. (2003). Folding proteins in fatal ways. Nature 426, 900–904.

65. Olzscha, H., Schermann, S.M., Woerner, A.C., Pinkert, S., Hecht, M.H., Tartaglia, G.G., Vendruscolo, M., Hayer-Hartl, M., Hartl, F.U., and Vabulas, R.M. (2011). Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions. Cell 144, 67–78.

66. Cohen, A.S., and Calkins, E. (1959). Electron microscopic observations on a fibrous component in amyloid of diverse origins. Nature 183, 1202–1203. 67. Pepys, M.B., Herbert, J., Hutchinson, W.L., Tennent, G.A., Lachmann, H.J., Gallimore, J.R., Lovat, L.B., Bartfai, T., Alanine, A., Hertel, C., et al. (2002). Targeted pharmacological depletion of serum amyloid P component for treatment of human amyloidosis. Nature 417, 254–259.

68. Westermark, P. (2005). Aspects on human amyloid forms and their fibril polypeptides. FEBS J. 272, 5942–5949.

69. Revesz, T., Holton, J.L., Lashley, T., Plant, G., Frangione, B., Rostagno, A., and Ghiso, J. (2009). Genetics and molecular pathogenesis of sporadic and hereditary cerebral amyloid angiopathies. Acta Neuropathol. 118, 115–130.

70. Calhoun, M.E., Burgermeister, P., Phinney, A.L., Stalder, M., Tolnay, M., Wiederhold, K.H., Abramowski, D., Sturchler-Pierrat. С., Sommer. В., Staufenbiel, M., and Jucker, M. (1999). Neuronal overexpression of mutant amyloid precursor protein results in prominent deposition of cerebrovascular amyloid. Proc. Natl. Acad. Sci. USA 96, 14088-14093.

71. Coomaraswamy, J., Kilger, E., Wo["] lfing, H., Scha["] fer, C., Kaeser, S.A., Wegenast-Braun, B.M., Hefendehl, J.K., Wolburg, H., Mazzella, M., Ghiso, J., et al. (2010). Modeling familial Danish dementia in mice supports the concept of the amyloid hypothesis of Alzheimer's disease. Proc. Natl. Acad. Sci. USA 107, 7969–7974.

72. Dierksen, G.A., Skehan, M.E., Khan, M.A., Jeng, J., Nandigam, R.N., Becker,

J.A., Kumar, A., Neal, K.L., Betensky, R.A., Frosch, M.P., et al. (2010). Spatial relation between micro-bleeds and amyloid deposits in amyloid angiopathy. Ann. Neurol. 68, 545–548.

73. Maeda, A., Yamada, M., Itoh, Y., Otomo, E., Hayakawa, M., and Miyatake, T. (1993). Computer-assisted threedimensional image analysis of cerebral amyloid angiopathy. Stroke 24, 1857–1864.

74. Winkler, D.T., Bondolfi, L., Herzig, M.C., Jann, L., Calhoun, M.E., Wiederhold, K.H., Tolnay, M., Staufenbiel, M., and Jucker, M. (2001). Spontaneous hemorrhagic stroke in a mouse model of cerebral amyloid angiopathy. J. Neurosci. 21, 1619–1627.

75. Haass, C., and Selkoe, D.J. (2007). Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid beta-peptide. Nat. Rev. Mol. Cell Biol. 8, 101–112.

76. Lesné, S., Koh, M.T., Kotilinek, L., Kayed, R., Glabe, C.G., Yang, A., Gallagher, M., and Ashe, K.H. (2006). A specific amyloid-beta protein assembly in the brain impairs memory. Nature 440, 352– 357.

77. Shankar, G.M., Li, S., Mehta, T.H., Garcia-Munoz, A., Shepardson, N.E., Smith, I., Brett, F.M., Farrell, M.A., Rowan, M.J., Lemere, C.A., et al. (2008). Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nat. Med. 14, 837–842. 78. Lambert, M.P., Barlow, A.K., Chromy, B.A., Edwards, C., Freed, R., Liosatos, M., Morgan, T.E., Rozovsky, I., Trommer, B., Viola, K.L., et al. (1998). Diffusible, nonfibrillar ligands derived from Abeta1-

42 are potent central nervous system neurotoxins. Proc. Natl. Acad. Sci. USA 95, 6448–6453.

79. Ono, K., Condron, M.M., and Teplow, D.B. (2009). Structure-neurotoxicity relationships of amyloid beta-protein oligomers. Proc. Natl. Acad. Sci. USA 106, 14745–14750.

80. Meyer-Luehmann, M., Coomaraswamy, J., Bolmont, T., Kaeser, S., Schaefer, C., Kilger, E., Neuenschwander, A., Abramowski, D., Frey, P., Jaton, A.L., et al. (2006). Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host. Science 313, 1781–1784.

81. Paravastu, A.K., Qahwash, I., Leapman, R.D., Meredith, S.C., and Tycko, R. (2009). Seeded growth of beta-amyloid fibrils from Alzheimer's brain-derived fibrils produces a distinct fibril structure. Proc. Natl. Acad. Sci. USA 106, 7443–7448.

82.Spires-Jones, T.L., Kopeikina, K.J., Koffie, R.M., de Calignon, A., and Hyman, B.T. (2011). Are tangles as toxic as they look? J. Mol. Neurosci. 45, 438–444.

83. Winner, B., Jappelli, R., Maji, S.K., Desplats, P.A., Boyer, L., Aigner, S., Hetzer, C., Loher, T., Vilar, M., Campioni, S., et al. (2011). In vivo demonstration that alpha-synuclein oligomers are toxic. Proc. Natl. Acad. Sci. USA 108, 4194–4199.

84. Glabe, C.G. (2008). Structural classification of toxic amyloid oligomers. J. Biol. Chem. 283, 29639–29643.

85.Campioni, S., Mannini, B., Zampagni, M., Pensalfini, A., Parrini, C., Evangelisti, E., Relini, A., Stefani, M., Dobson, C.M., Cecchi, C., and Chiti, F. (2010). A causative link between the structure of aberrant protein oligomers and their toxicity. Nat. Chem. Biol. 6, 140–147.

86.Keshet, B., Yang, I.H., and Good, T.A. (2010). Can size alone explain some of the differences in toxicity between beta-amyloid oligomers and fibrils? Biotechnol. Bioeng. 106, 333–337.

87. Roychaudhuri, R., Yang, M., Hoshi, M.M., and Teplow, D.B. (2009). Amyloid beta-protein assembly and Alzheimer disease. J. Biol. Chem. 284, 4749–4753.

88. Yankner, B.A., and Lu, T. (2009). Amyloid beta-protein toxicity and the pathogenesis of Alzheimer disease. J. Biol. Chem. 284, 4755–4759.

89. Shankar, G.M., and Walsh, D.M. (2009). Alzheimer's disease: synaptic dysfunction and Abeta. Mol. Neurodegener. 4, 48.

90. Cissé, M., Halabisky, B., Harris, J., Devidze, N., Dubal, D.B., Sun, B., Orr, A., Lotz, G., Kim, D.H., Hamto, P., et al. (2011). Reversing EphB2 depletion rescues cognitive functions in Alzheimer model. Nature 469, 47–52.

91. Lacor, P.N., Buniel, M.C., Furlow, P.W., Clemente, A.S., Velasco, P.T., Wood, M., Viola, K.L., and Klein, W.L. (2007). Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer's disease. J. Neurosci. 27, 796– 807.

92. Laure'n, J., Gimbel, D.A., Nygaard, H.B., Gilbert, J.W., and Strittmatter, S.M. (2009). Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature 457, 1128–1132.

93. Snyder, E.M., Nong, Y., Almeida, C.G., Paul, S., Moran, T., Choi, E.Y., Nairn, A.C., Salter, M.W., Lombroso, P.J., Gouras, G.K., and Greengard, P. (2005). Regulation of NMDA receptor trafficking by amyloidbeta. Nat. Neurosci. 8, 1051–1058.

94. Wei, W., Nguyen, L.N., Kessels, H.W., Hagiwara, H., Sisodia, S., and Malinow, R. (2010). Amyloid beta from axons and dendrites reduces local spine number and plasticity. Nat. Neurosci. 13, 190–196.

95.Glabe, C.G., and Kayed, R. (2006). Common structure and toxic function of amyloid oligomers implies a common mechanism of pathogenesis. Neurology 66 (2, Suppl 1), S74–S78.

96. Hebda, J.A., and Miranker, A.D. (2009). The interplay of catalysis and toxicity by amyloid intermediates on lipid bilayers: insights from type II diabetes. Annu Rev Biophys 38, 125–152.

97. Stefani, M. (2010). Biochemical and biophysical features of both oligomer/fibril and cell membrane in amyloid cytotoxicity. FEBS J. 277, 4602–4613.

98. Hedden, T., Van Dijk, K.R., Becker, J.A., Mehta, A., Sperling, R.A., Johnson, K.A., and Buckner, R.L. (2009). Disruption of functional connectivity in clinically normal older adults harboring amyloid burden. J. Neurosci. 29, 12686–12694.

99. Tsai, J., Grutzendler, J., Duff, K., and Gan, W.B. (2004). Fibrillar amyloid deposition leads to local synaptic abnormalities and breakage of neuronal branches. Nat. Neurosci. 7, 1181–1183.

100. Jan, A., Adolfsson, O., Allaman, I., Buccarello, A.L., Magistretti, P.J., Pfeifer, A., Muhs, A., and Lashuel, H.A. (2011). Abeta42 neurotoxicity is mediated by ongoing nucleated polymerization process rather than by discrete Abeta42 species. J. Biol. Chem. 286, 8585–8596.

101. Martins, I.C., Kuperstein, I., Wilkinson,
H., Maes, E., Vanbrabant, M., Jonckheere,
W., Van Gelder, P., Hartmann, D.,
D'Hooge, R., De Strooper, B., et al. (2008).
Lipids revert inert Abeta amyloid fibrils to
neurotoxic protofibrils that affect learning in
mice. EMBO J. 27, 224–233.

102. Selkoe, D.J. (2011). Resolving controversies on the path to Alzheimer's therapeutics. Nat. Med. 17, 1060–1065.

103. Wogulis, M., Wright, S., Cunningham, D., Chilcote, T., Powell, K., and Rydel, R.E. (2005). Nucleation-dependent polymerization is an essential component of amyloid-mediated neuronal cell death. J. Neurosci. 25, 1071–1080.

- 104. Teplow, D. B. (1998) Amyloid 5, 121– 142
- 105.Caughey, B., and Lansbury, P. T. (2003) Annu. Rev. Neurosci. 26, 267– 298
- 106.Bitan, G., and Teplow, D. B. (2004) Acc. Chem. Res. 37, 357–364

107. Urbanc, B., Cruz, L., Yun, S., Buldyrev, S. V., Bitan, G., Teplow, D. B., and Stanley, H. E. (2004) *Proc. Natl. Acad. Sci. U. S. A.* 101, 17345–17350

108. Chen, Y.-R., and Glabe, C. G. (2006) *J. Biol. Chem.* 281, 24414–24422

109. Teplow, D. B., Lazo, N. D., Bitan, G., Bernstein, S., Wyttenbach, T., Bowers, M. T., Baumketner, A., Shea, J.-E., Urbanc, B., Cruz, L., Borreguero, J., and Stanley, H. E. (2006) *Acc. Chem. Res.* 39, 635–645

110. Grant, M. A., Lazo, N. D., Lomakin, A., Condron, M. M., Arai, H., Yamin, G., Rigby, A. C., and Teplow, D. B. (2007) *Proc. Natl. Acad. Sci. U. S. A.* 104, 16522–16527

111. Sipe, J. C. (ed) (2005) Amyloid Proteins: The Beta Sheet Conformation and Disease, Wiley-VCH, Weinheim, Germany

- 112.Hardy, J. (1996) Ann. Med. 28, 255– 258
- 113.Kirkitadze, M. D., Bitan, G., and Teplow, D. B. (2002) *J. Neurosci. Res.* 69, 567–577
- 114.Hardy, J., and Selkoe, D. J. (2002) *Science* 297, 353–356

115. Walsh, D. M., Hartley, D. M., Kusumoto, Y., Fezoui, Y., Condron, M. M., Lomakin, A., Benedek, G. B., Selkoe, D. J., and Teplow, D. B. (1999) *J. Biol. Chem.* 274, 25945–25952

116.Lundmark K, Westermark GT, Nystrom S, Murphy CL, Solomon A, Westermark P. 2002. *Proc. Natl. Acad. Sci. USA* 99:6979–84

- 117.LundmarkK,WestermarkGT,OlsenA,WestermarkP.2005.Proc.Natl.Acad.Sci.USA 102:6098–102
- 118.Legname G, Baskakov IV, Nguyen HO, Riesner D, Cohen FE, et al. 2004. *Science* 305:673–76
- 119.Hirschfield GM, Hawkins PN. 2003. Int. J. Biochem. Cell. Biol. 35:1608–13
- 120.Alexandrescu AT. 2005. Protein Sci. 14:1–12
- 121.Serpell LC, Sunde M, Benson MD, Tennent GA, Pepys MB,Fraser PE.2000.*J.Mol.Biol*.300:1033–39
- 122. Bauer HH, Aebi U, Haner M, Hermann R, Muller M, Merkle HP. 1995. J. Struct. Biol. 115:1–15

- 123.Saiki M, Honda S, Kawasaki K, ZhouD, Kaito A, et al. 2005. J. Mol. Biol.348:983–98
- 124.Pedersen JS, Dikov D, Flink JL, Hjuler HA, Christiansen G, Otzen D. 2005. J. Mol. Biol. 355:501–23

125. Nilsson, K.P., Joshi-Barr, S., Winson, O., and Sigurdson, C.J. (2010). Prion strain interactions are highly selective. J. Neurosci. 30, 12094–12102.

- 126.Khurana R, Uversky VN, Nielsen L, Fink AL. 2001. *J. Biol. Chem.* 276:22715–21
- 127. Bousset L, Redeker V, Decottignies P, Dubois S, Le Marechal P, Melki R. 2004. *Biochemistry*

43:5022-32

128. Jin LW, Claborn KA, Kurimoto M, Geday MA, Maezawa I, et al. 2003. *Proc. Natl. Acad. Sci. USA*

100:15294-98

129.Krebs MRH, MacPhee CE, Miller AF, Dunlop LE, Dobson CM, Donald AM. 2004. *Proc. Natl. Acad. Sci. USA* 101:14420–24

130. Johnson, S.M., Connelly, S., Fearns, C., Powers, E.T., and Kelly, J.W. (2012). The transthyretin amyloidoses: from delineating the molecular mechanism of aggregation linked to pathology to a regulatory-agency-approved drug. J Mol Biol. Published online January 5, 2012. 10.1016/j.jmb.2011.12.060.

131.Klabunde, T., Petrassi, H.M., Oza, V.B., Raman, P., Kelly, J.W., and

Sacchettini, J.C. (2000). Rational design of potent human transthyretin amyloid disease inhibitors. Nat. Struct. Biol. 7, 312–321.

132. Necula, M., Kayed, R., Milton, S., and Glabe, C.G. (2007). Small molecule inhibitors of aggregation indicate that amyloid beta oligomerization and fibrillization pathways are independent and distinct. J. Biol. Chem. 282, 10311–10324.

133. Chen, J., Armstrong, A.H., Koehler, A.N., and Hecht, M.H. (2010). Small molecule microarrays enable the discovery of compounds that bind the Alzheimer's Ab peptide and reduce its cytotoxicity. J. Am. Chem. Soc. 132, 17015–17022.

134. Pickhardt, M., von Bergen, M., Gazova, Z., Hascher, A., Biernat, J., Mandelkow, E.M., and Mandelkow, E. (2005). Screening for inhibitors of tau polymerization. Curr. Alzheimer Res. 2, 219–226.

135. Sciarretta, K.L., Gordon, D.J., and Meredith, S.C. (2006). Peptide-based inhibitors of amyloid assembly. Methods Enzymol. 413, 273–312.

136. Tjernberg, L.O., Na^{••} slund, J., Lindqvist, F., Johansson, J., Karlstro^{••} m, A.R., Thyberg, J., Terenius, L., and Nordstedt, C. (1996). Arrest of beta-amyloid fibril formation by a pentapeptide ligand. J. Biol. Chem. 271, 8545–8548.

137. Liao, M.C., Hoos, M.D., Aucoin, D., Ahmed, M., Davis, J., Smith, S.O., and Van Nostrand, W.E. (2010). N-terminal domain of myelin basic protein inhibits amyloid beta-protein fibril assembly. J. Biol. Chem. 285, 35590–35598.

138.Pepys, M.B. (2001). Pathogenesis, diagnosis and treatment of systemic amyloidosis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 356, 203–210, discussion 210–211.

139. Singleton, A., Myers, A., and Hardy, J. (2004). The law of mass action applied to neurodegenerative disease: a hypothesis concerning the etiology and pathogenesis of complex diseases. Hum. Mol. Genet. 13(Spec No 1), R123–R126.

140. Schilling, S., Zeitschel, U., Hoffmann, T., Heiser, U., Francke, M., Kehlen, A., Holzer, M., Hutter-Paier, B., Prokesch, M., Windisch, M., et al. (2008). Glutaminyl cyclase inhibition attenuates pyroglutamate Abeta and Alzheimer's disease-like pathology. Nat. Med. 14, 1106–1111.

141.Brody, D.L., and Holtzman, D.M. (2008). Active and passive immunotherapy for neurodegenerative disorders. Annu. Rev. Neurosci. 31, 175–193.

142. Jucker, M. (2010). The benefits and limitations of animal models for translational research in neurodegenerative diseases. Nat. Med. 16, 1210–1214.

143. Golde, T.E., Schneider, L.S., and Koo, E.H. (2011). Anti-ab therapeutics in Alzheimer's disease: the need for a paradigm shift. Neuron 69, 203–213. 144. Aguzzi, A., and O'Connor, T. (2010). Protein aggregation diseases: pathogenicity and therapeutic perspectives. Nat. Rev. Drug Discov. 9, 237–248.

145. Chai, X., Wu, S., Murray, T.K., Kinley, R., Cella, C.V., Sims, H., Buckner, N., Hanmer, J., Davies, P., O'Neill, M.J., et al. (2011). Passive immunization with anti-Tau antibodies in two transgenic models: reduction of Tau pathology and delay of disease progression. J. Biol. Chem. 286, 34457–34467.

146. Masliah, E., Rockenstein, E., Mante, M., Crews, L., Spencer, B., Adame, A., Patrick, C., Trejo, M., Ubhi, K., Rohn, T.T., 148. et al. (2011). Passive immunization reduces behavioral and neuropathological deficits in an alpha-synuclein transgenic model of Lewy body disease. PLoS ONE 6, e19338.

147. Bodin, K., Ellmerich, S., Kahan, M.C., Tennent, G.A., Loesch, A., Gilbertson, J.A., Hutchinson, W.L., Mangione, P.P., Gallimore, J.R., Millar, D.J., et al. (2010). Antibodies to human serum amyloid P eliminate component visceral amyloid deposits. Nature 468. 93-97.