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Abstract 

 

The type, timing, duration, and frequency of exposures to adverse 

childhood experiences (ACEs) or early life stress 

(prenatal/postnatal) are likely antecedents of nervous system 

dysregulation manifesting across multiple systems. These are 

mediated through multiple neuroendocrine axes (hypothalamic-

pituitary-adrenal, hypothalamic-pituitary-thyroid, pituitary-growth 

hormone/insulin-like growth factor-1 (IGF), hypothalamic-

pituitary-gonadal) and the autonomic system (sympathetic or 

parasympathetic), but they also affect neuro-immune interactions 

(innate and adaptive immunity) and the neuroenteric system 

(gastric, intestinal, and hepato-pancreatic).  

Even in the absence of abuse or neglect, children are increasingly 

exposed to three overarching trends: 1) parental use of psychotropic 

drugs and substances; 2) inconsistent or distracted parenting; and 3) 

deprivation from natural environments, social engagements, and 

unstructured play (that is not technology-dependent).  Thus, 

children may fail to acquire developmentally appropriate self-

regulation, coping skills, or peer engagement skills; they often 

receive pharmaceuticals for behavioral compliance, as opposed to 

mindfulness, self-reflection, or cognitive-behavioral therapy to 

guide self-development. Children presenting with clinically 

unexplained symptoms across multiple domains (executive 

dysfunction, sleep disturbances, autonomic dysregulation, 

somatization, digestive symptoms, emotional dysregulation) are 

susceptible to permanent reductions in grey matter volume, 

cognitive/behavioral problems, and poorer physical and mental 

health.  Early life stress disrupts their first-time learning 

experiences; acclimatizes them toward pathways of negative (fear-

motivated, anxiety-inducing) reinforcement of affiliated 

experiences, with atypical internalizing or externalizing behaviors, 

and impaired self-regulation.  Positive experiences in the presence 

of supportive, nurturing parents with consistent parenting 

styles/practices can reverse this trend and avoid the long-term 

consequences of nervous system dysregulation.  
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1. Introduction 

Children with a history of adverse childhood 

experiences (ACEs) may present with 

unexplained symptoms across multiple 

domains (namely, executive dysfunction, 

sleep disturbances, autonomic dysregulation, 

somatization, digestive symptoms, and 

emotional dysregulation).
1
 The involvement 

of multiple clinical domains suggests overall 

dysregulation of the central nervous system 

(CNS) as opposed to isolated effects on 

stress-responsive systems like the 

hypothalamic-pituitary-adrenal (HPA) axis 

or the sympathetic-adrenal medullary 

(SAM) axis.  Preschool children are 

particularly vulnerable to the long-term 

effects of ACEs because of their behavioral 

immaturity, limited coping skills, and brain 

plasticity with immature sensory, motor, and 

neuroendocrine systems.
2-4

 For example, the 

HPA axis does not mature until 4-5 years of 

age
5
 and its dysregulation may interrupt 

further sequential development of higher 

limbic system structures such as the 

amygdala,
6
 the hippocampal complex,

6,7
 and 

the prefrontal cortex (PFC).
8
  

 

In 2015, Ortega-Martinez presented the 

hypothesis known as the "the double 

neurogenic niche hypothesis" which states 

that each kind of fetal and childhood stressor 

influences a specific neurogenic pool that 

later becomes a precursor for adult 

hippocampal neurogenesis.
9
 Disruption of 

neurobehavioral development induces 

permanent alterations in adult biological and 

behavioral phenotypes, linked to the types of 

stressful stimuli experienced, the timing of 

stressful events, and general environmental 

conditions, with several psychopathologies, 

like psychosis and mood disorders appearing 

in adolescence.
8
 Reduced grey matter 

volume in the anterior ventromedial PFC 

correlated inversely with PTSD duration in 

children, suggesting ongoing neurotoxic 

processes in youth with PTSD.
10

 HPA axis 

dysregulation may influence subsequent 

cortical maturation, grey matter volumes, 

cognitive ability, and emotional well-being. 

Consequently, children presenting with 

medically unexplained symptoms should be 

assessed for unreported ACEs as well as the 

biomarkers of chronic emotional (e.g., 

cortisol) and biologic stress (e.g., telomere 

length). 

 

Early life stress (ELS) and ACEs do not 

mean the same thing, although each carries a 

potential for triggering CNS dysregulation. 

“ELS” is a general term used for stress 

occurring in the prenatal and early postnatal 

periods. For example, ELS may include 

parental dependency or risk-taking 

behaviors known to compromise the in utero 

environment, postnatal care or home 

environment of the baby. For example, 

maternal postnatal depression, which 

influences a mother’s parenting-style and 

newborn bonding, is also considered as ELS. 

The term “ACEs”, however, is generally 

used to characterize specific types of 

stressors, first defined in the ACEs 

study.
11,12

 The ACEs questionnaire 

retrospectively surveyed adults for 8 specific 

adverse experiences in childhood and found 

that persons who had experienced four or 

more ACEs compared to those who had 

experienced none, had 4- to 12-fold 

increased health risks for alcoholism, drug 

abuse, depression, and suicide attempts; a 2- 

to 4-fold increases in smoking, poor self-

rated health, multiple sexual partners, and 
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sexually transmitted diseases, as well as 

increases in physical inactivity and severe 

obesity.
11

 ACEs also showed a graded 

relationship to the prevalence of chronic 

non-communicable adult-onset diseases 

including ischemic heart disease, type-II 

diabetes, cancer, chronic lung disease, or 

liver disease. The ACEs were strongly 

interrelated and persons with multiple 

categories of childhood exposure were likely 

to have multiple health risk factors later in 

life.
12

 

 

The type, timing, duration, and frequency of 

exposures to ELS and/or subsequent ACEs 

are likely to determine the advent of nervous 

system dysregulation manifesting through 

multiple pathways, including: 1) the 

neuroendocrine axes (hypothalamic-

pituitary-adrenal, pituitary-thyroid, pituitary-

growth hormone, hypothalamic-pituitary-

gonadal); 2) the autonomic system 

(sympathetic or parasympathetic); 3) neuro-

immune interactions (innate and adaptive 

immunity at the cellular and humoral level); 

and 4) the neuro-enteric system (gastric, 

intestinal, and hepato-pancreatic).  Figure 1 

summarizes a model for the antecedent and 

contributing factors leading to the advent of 

CNS dysregulation.  This review examines 

nervous system dysregulation primarily 

from a psychoneuroendocrine perspective, 

and does not explore other pathways 

associated with neuroinflammatory 

mechanisms, genetic and epigenetic 

regulation, regulation of the neurenteric 

system or the human microbiome.    

 

Figure 1: 

 
 

Figure 1:  A proposed model for CNS dysregulation, showing the common antecedent factors 

drawn from the social determinants of health and their impact on growth and development 

occurring in early life.  Positive and negative influences within critical windows of development 

can trigger physiological adaptations (involving the neuroendocrine, autonomic, neuroimmune, 

and neurenteric regulation systems), psychological adaptations (internalizing or externalizing 

behaviors, impaired coping mechanisms, secondary gain, vulnerability to various 

psychopathologies), and health-promoting vs. health-harming behaviors (diet, substance abuse, 

exercise, sleep habits, etc.), eventually leading to resolution vs. dysregulation.  
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1.1 Hypothalamic-Pituitary-Adrenal 

(HPA) Axis  

Aberrant development in response to 

prenatal or postnatal ELS leads to HPA axis 

dysregulation,
13

 associated with cognitive 

impairment,
14,15

 childhood behavioral and 

developmental problems,
16-19

 impaired 

immunity,
20

 mood disorders,
21

 depression 

during adolescence,
22

 with greater risks of 

adult chronic non-communicable diseases
13

 

and neurodegenerative disorders.
14

 Apart 

from heritable genetic and epigenetic traits, 

cumulative and sequential exposures to a 

variety of stressors such as social adversity, 

socioeconomic insecurity, isolation/neglect, 

perceived discrimination, physical and 

emotional trauma, chronic pain, critical 

illness and other stressful events in early life 

are likely to perturb neurogenesis in the 

subventricular zones.
23,24

 These trigger 

changes in pathway development within 

developing brain systems, within cortical 

and subcortical areas, including the 

hypothalamus.
25,26

 We propose that prenatal 

and post-natal stress may cause 

“neurogenesis abruption”, constrict the 

proliferation of neural stem progenitor cells, 

their differentiation, migration. and 

maturation as neuronal precursors, and their 

integration into functional pathways and 

systems within the prefrontal cortex, 

hippocampus, amygdala, corpus callosum, 

anterior commissure, thalamus, 

hypothalamus and basal ganglia, thus 

altering HPA axis development and 

regulation.
27-29

 

 

The HPA axis appears to be a central 

regulator of stress-responsive systems.
28,30

 

The physiological mechanisms of stress are 

well documented even though the normative 

ranges of specific stress hormones, like 

cortisol in children are still being debated.
31

 

Stressful events stimulate the parvocellular 

neurons, located in the hypothalamic 

paraventricular nucleus (PVN), to secrete 

corticotropin releasing hormone (CRH).
32

 

CRH stimulates the anterior pituitary 

corticotrope cells to release ACTH, which 

then triggers glucocorticoid production in 

the adrenal cortex.
32

 ACTH can also 

stimulate gene expression of the 

norepinephrine biosynthesis enzymes, 

crosslinking with the sympathetic-adrenal 

medullary (SAM) axis to escalate the stress 

response.
33

 Disconnects in regulation 

between ACTH and cortisol and vice versa 

lead to chronic, abnormally high levels of 

cortisol or a blunting of diurnal variations, 

both defined as HPA axis dysregulation. 

HPA axis dysregulation mediates epigenetic 

changes that can be transmitted 

intergenerationally
34

 and is known to alter 

the formation of neurocircuitry.
35

 Maternal-

infant bonding and maternal sensory 

stimulation establish enduring changes in 

“experience-induced neuroplasticity”
36

 and 

are mediated through activation of the 

arginine vasopressin (AVP)/oxytocin 

pathway.
37

 Nurturing parental behaviors are 

linked to oxytocin release in young 

children.
38-41

 Oxytocin directly and 

indirectly inhibits ACTH release and 

cortisol responses by acting as an 

vasopressin antagonist in the PVN and 

anterior pituitary.
42

 Oxytocin is also strongly 

linked with memories of anxiety, fear and 

fear extinction.
43,44

  

 

Reciprocal regulation of the HPA axis and 

AVP/oxytocin systems is amply illustrated 

in animal studies, but also following 
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exposure to ELS in humans. For example, 8 

year-old children enduring physical abuse 

had gender specific cortisol and oxytocin 

levels during controlled stress: girls, but not 

boys, showed a higher oxytocin and lower 

cortisol responses.
45

 Functioning of the 

amygdala is different between boys and 

girls, such that girls are more likely to 

interpret abuse as fearful thereby triggering 

anxiety and depression in adulthood.
46

 

PTSD, other affective disorders, and 

underactive stress hormone levels 

(suppression of the HPA axis) occurred 

commonly in women that experienced 

childhood sexual abuse.
47,48

 School children 

raised with domestic and/or neighborhood 

violence had shortened telomere length 

(indicates premature cellular aging and 

biologic stress), an inability to reduce 

cortisol following reactivity test and a 

steeper diurnal cortisol decline.
49

 Exposure 

to chronic childhood stress is linked with 

alterations in brain development, challenges 

to well-being and sound health, school 

readiness and academic success, and shaping 

of social relationships.
50

 Chronic exposures 

to various stressors can alter the 

development and regulation of several brain 

regions and the HPA axis.
32,33,51

 

 

Prenatal brain development is particularly 

vulnerable to long-term programming by 

stress, particularly glucocorticoid effects 

mediated via the hypothalamic-pituitary-

adrenal (HPA) axis (for review see 

Moisiadis and Matthews, 2014).
52

 Basically, 

cortisol is the most abundant 

glucocorticoid hormone mediating stress-

related changes in homeostasis associated 

with wide-ranging genomic regulation.
53,54

 

The promoter regions of many genes 

contain cortisol response elements (CREs) 

known to up- or down-regulate gene 

expression, explaining how cortisol release 

can be physiologically adaptive, 

maladaptive, or toxic – by altering 

homeostasis (blood pressure, calcium 

absorption, anti-inflammatory activity, 

lipogenesis/lipolysis, gluconeogenesis, 

glycogenolysis, protein breakdown, insulin 

resistance, glomerular filtration, etc.),
55,56

 as 

well as brain development.
57-61

 Cortisol 

regulates the autonomic stress system 

(epinephrine, norepinephrine) to alter 

intermediary metabolism as well as 

physiological responses, but also 

contributes to memory formation and 

learning following short-term stressful 

events (adaptive response).
62,63

 Normally 

functioning HPA axis limits cortisol 

exposure through a negative feed-back 

loop to the hypothalamus and anterior 

pituitary,
55,56

 but this negative feed-back 

loop is ineffective in children with a 

dysregulated HPA axis.
64,65

 Based on a 

longitudinal study of 100 maternal-child 

dyads, Karlen et al. concluded that 

development of the HPA axis is guided by 

heritable traits with “maternal calibration” 

of early childhood set-points for cortisol 

responses in their offspring that stabilize 

with increasing age.
66

 The antecedents of 

HPA axis dysregulation often reside in early 

life adversity,
59,67-71

 increasing the lifetime 

risks for chronic non-communicable 

diseases, poor physical and mental 

health,
72,73

 drug abuse or other risk-taking 

behaviors,
74,75

 leading to significant 

morbidity and early mortality.
76-86

 

 

1.2 Hypothalamic-Pituitary-Thyroid 

(HPT) Axis  
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The hypothalamic-pituitary-thyroid axis 

controls somatic growth, brain development, 

energy homeostasis and thermogenesis by 

regulating intermediary metabolism and 

mitochondrial function
87

 through the 

synthesis of thyrotropin releasing hormone 

(TRH) by the PVN, which releases 

thyroxine (T4) and triiodothyronine (T3) 

from the thyroid gland. Genomic studies 

found T3-response element genes enriched 

in astrocytes and neurons of the subplate 

zone and in specific neurons from 

neuroendocrine areas sustaining a transition 

from fetal to adult patterns of gene 

expression.
88

 Steady declines in TRH 

secretion were implicated in the 

neurodegenerative conditions of aging, 

coupled with loss of its neuroprotective 

effects against oxidative stress, glutamate 

toxicity, caspase-induced cell death, and 

neuroglial inflammation in the diencephalon 

and spinal cord.
89

 A neuroprotective role for 

TRH or T3 during toxic stress or critical 

illness, states often associated with altered 

thyroid hormones and mitochondrial 

function, has not been investigated.   

 

Exposure to ACEs or traumatic life events 

during critical windows in human 

development
2
 often leads to subsequent 

manifestation of thyroid dysregulation
90-92

 

and activation of the HPA axis.
90

  Wang 

reported an association between ACEs and 

hyperthyroidism, also documented 

historically,
93,94

 suggesting that changes in 

thyroid regulation are contextual (fright or 

flight) and time sensitive (age of exposure 

and proximity to precipitating events).
92

 

Early life trauma was associated with 

reduced T3 levels in adolescents even after 

adjusting for potential confounders like 

pubertal status, gender, socioeconomic 

status and BMI,
95

 confirmed in sexually 

abused adolescent females, where measures 

of PTSD and depression were negatively 

correlated with thyroid hormone levels (T3, 

T4).
96

  Conversely, elevated T3 levels and 

hyperthyroidism occurred in women with 

histories of physical or sexual abuse leading 

to menstrual-related mood disorders, PTSD, 

depression, or other psychiatric diagnoses.
97-

101
 Thus, it is likely that childhood abuse 

leads to early suppression of the HPT axis 

and thyroid function, with later changes in 

HPT regulation resulting in a hyperthyroid 

state.   

 

1.3. Hypothalamic-Pituitary-Gonadal axis 

The hypothalamic-pituitary-gonadal (HPG) 

axis is functional mainly in the perinatal, 

prepubertal and pubertal periods.
102

 The 

hypothalamus regulates both HPA and HPG 

axes through complex cross-talk of socially 

and psychologically responsive 

neuroendocrine factors, neurotransmitters, 

and neurohormones. One hypothesis 

explaining gender differences in 

developmental or mental health conditions 

(e.g., depression, anxiety, schizophrenia, 

anorexia/bulemia, autism, ADHD, OCD, 

and others) relates to context-specific 

interactions between the HPA and HPG 

axes.  For example, the PVN of women had 

larger arginine vasopressin (AVP) 

neurons,
103

 contributing to greater HPA axis 

stress responses and associated with altered 

HPA reactivity during the menstrual cycle 

and in pregnancy. Hypothalamic activation 

of the HPG axis for the release of 

gonadotropin-releasing hormone (GnRH) 

launches gonadal development at the onset 

of puberty which “is gated by the state of 
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body energy reserves and sensitivity to 

metabolic cues”.
104

 

 

HPA axis hormones (cortisol and ACTH) 

increase gonadotropin-inhibitory hormone 

(GnIH)
105,106

 and via GnIH receptors are 

located in the limbic system, telencephalon, 

diencephalon and midbrain areas,
106

 control 

behavioral stress responses.  Chronic stress 

can also inhibit the onset of puberty, 

compromise fertility during childbearing 

years, disrupt reproductive functions and 

behaviors, may trigger preterm labor, and 

also lead to HPA axis dysregulation in the 

offspring.
105,107-110

 Indeed, prenatal maternal 

trauma was associated with elevated hair 

cortisol levels in their preschool children
111

 

and dysregulated HPA-HPG interactions in 

late childhood.
112

  Another study reported 

preliminary evidence suggesting that 

prenatal maternal stress reduces the age at 

menarche in their offspring, mediated 

through its effects on elevated BMI in early 

childhood.
113

 Epidemiologic studies reported 

that girls exposed to ACEs or other early life 

stressors had altered pubertal development, 

such that sexual abuse was associated with 

earlier puberty whereas physical abuse was 

associated with early or delayed puberty.
114-

116
 Dismukes et al. explored HPA-HPG axis 

coupling and stress responses in 64 males 

and 56 females; they found that testosterone 

and DHEA positively predicted cortisol 

responses, whereas early life adversity, 

marital discord and family life stress 

increased the coupling between cortisol and 

testosterone.
117

 Much further work is 

required to elucidate the relationships 

between the exposures to ELS and 

neuroendocrine regulation of the HPG axis.  

 

1.4 Autonomic System Dysregulation 

The sympathetic and parasympathetic 

components work in tandem within a 

healthy autonomic nervous system (ANS) 

for the regulation of body temperature, 

breathing and heart rates, digestion, 

reproduction, and responses to stress. Stress-

induced ANS dysregulation can be indexed 

by measuring salivary alpha-amylase 

(sAA).
118,119

 Dysregulation of each stress 

system may differentially contribute to the 

symptoms of CNS dysregulation. Sexually 

dimorphic adaptations may occur during 

pregnancy. “Women carrying female fetuses 

displayed greater autonomic arousal and 

flatter (but more elevated) diurnal cortisol 

patterns compared to women carrying males. 

Women with flatter daytime cortisol 

trajectories and more blunted sAA 

awakening responses also had infants with 

lower birth weight. These maternal 

adaptations are consistent with sexually 

dimorphic fetal/developmental/evolutionary 

adaptation strategies that favor growth for 

males and conservation of resources for 

females.”
120

 

 

Relatively rare forms of childhood ANS 

dysregulation include postural orthostatic 

tachycardia syndrome (POTS; five times 

higher in females than males),
121

 congenital 

central hypoventilation syndrome,
122,123

 

rapid-onset obesity with hypothalamic 

dysregulation, hypoventilation, and 

autonomic dysregulation (ROHHAD),
124-126

 

neurocardiogenic syncope (NCS),
127

 and 

others. More prevalent forms of ANS 

dysfunction are associated with symptoms 

such as cyclic nausea and vomiting,
128

 

altered heart rate variability (HRV),
118,129

 

and vagal tone,
130

 recurrent headache 
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disorders,
131

 chronic fatigue syndrome.
132

  

ELS can trigger life-threatening conditions 

of ANS dysregulation
131,133-139

 and HPA axis 

dysregulation,
18,131,134,140-147

 suggestive of 

overall CNS dysregulation. Context specific, 

physical but not sexual abuse during 

childhood induces ANS hyporesponsivity 

(i.e., heart and respiratory rate 

deceleration),
137,138

 internalizing and 

disruptive behavior disorders.
138

 Women 

with higher child maltreatment scores had 

greater difficulties with emotional regulation 

and reduced cortisol reactivity, which 

contributed to their blunted postpartum 

physiological reactivity.
18

  Altered ANS 

reactivity and regulation have been 

documented in a variety of psychosomatic 

conditions associated with the involvement 

of multiple systems, many of which were 

associated with exposures to ELS.
148-156

 

Indeed, autonomic dysregulation may be the 

most consistent feature of the psychological, 

clinical, cognitive and behavioral outcomes 

resulting from any exposure to ACEs or 

other early life stressors.   

 

 

2. Comment 

The American Academy of Pediatrics 

(AAP) maintains that toxic stress in early 

life contributes the origin of many adult-

onset diseases, determining both physical 

and mental health. One AAP 

recommendation states, “The growing 

scientific knowledge base that links 

childhood toxic stress with disruptions of 

the developing nervous, cardiovascular, 

immune, and metabolic systems, and the 

evidence that these disruptions can lead to 

lifelong impairments in learning, behavior, 

and both physical and mental health, 

should be fully incorporated into the 

training of all current and future 

physicians”.
157

 Thus, “Identifying children 

at high risk for toxic stress is the first step 

in providing targeted support for their 

parents and other caregivers.”
157

  

 

Stress from early childhood adversity 

disrupts their first-time learning experiences; 

acclimatizes them toward a pathway of 

either positive (supportive, nurturing) or 

negative (fear inducing) reinforcement of 

affiliated experiences; shaping them toward 

internalizing or externalizing behaviors, and 

impeding self-regulation in general. Indeed, 

cognitive hypervigilance, autonomic 

dysfunction, and emotional instability have 

been identified as components of several 

idiopathic disorders associated with 

chronic/recurrent pain and disability, often 

involving somatic, visceral, and behavioral 

manifestations.158 Four or more ACEs were 

also linked with the early onset of chronic 

non-communicable diseases ranging from 

metabolic to cardiovascular diseases, cancer 

to mental health disorders, smoking to drug 

abuse and other risk-taking behaviors, with 

graded relationships occurring at all age 

groups (18-44, 45-64, and 65-89 years)
159

. 

 

Children raised in affluent countries are 

currently exposed to three somewhat related, 

dangerous overarching trends. First, 

progressively increasing early life exposures 

to parental use of psychotropic drugs and 

substances,
80,160,161

 including nicotine,
162,163

 

alcohol,
164-166

 prescribed pain 

medications.
167-170

 Second, disordered or 

distracted parenting due to the behavioral 

effects of these drugs, parental separation or 

incarceration, or parent unavailability from 
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the compulsive/addictive use of smartphones 

and other electronic devices resulting in 

lowered parent sensitivity, lack of parental 

consistency, or social buffering by 

parents.
171-174

 The addition of each negative 

experience results in a deeper layering of 

nervous system dysregulation spanning 

across major brain centers and affecting 

multiple behavioral and health domains.  

Third, children are less exposed to nature 

and social engagement, unstructured, 

exploratory, and non-technologically-

dependent play activities. Thus, many 

children are falling short of developmentally 

appropriate self-regulation, coping skills, 

and meaningful engagement with peers.  

They are often prescribed pharmaceuticals 

for enforced behavioral compliance as 

opposed to mindfulness, reflection, or 

behavioral therapies to guide their self-

development. 

 

Ineffective self-regulation coupled with risk-

taking behaviors increases the likelihood of 

detrimental outcomes. Self-regulation is 

dependent on a bio-behavioral system that is 

hierarchically organized and reciprocally 

integrated through bottom-up (limbic and 

brainstem structures) regulation of stress and 

emotional arousal, competing with the top-

down (prefrontal cortex) regulation of 

attention and executive functions.
175-177

 

Parent risk-taking behaviors are more 

commonly linked with cognitive 

vulnerability, depression, and suicidal 

ideology in their children than was 

previously acknowledged,
178

 potentially 

underlying the intergenerational 

transmission of these behaviors.
179-182

 

 

3. Clinical Implications 

We have explored the antecedents and 

consequences of CNS dysregulation mostly 

from a psychoneuroendocrine perspective, 

although their underlying processes are very 

likely dependent on genetic, epigenetic, 

neuroimmune, and multiple other regulatory 

pathways.  When clinicians are confronted 

with an assortment of medically unexplained 

signs and symptoms across multiple 

domains in their patients, they may choose 

to obtain a history of adverse conditions in 

early childhood, consider confirmatory 

testing to evaluate the neuroendocrine and 

autonomic systems discussed above, and 

develop a multidisciplinary approach that 

combines the benefits of both 

pharmacological and non-pharmacological 

modalities, coupled with lifestyle changes 

and social supports.  
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