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Abstract 

Glioma encompasses a heterogeneous group of 
primary brain tumors of astroglial/neural stem cell origin. In 
most cases, these tumors can be isolated and maintained in 

neural stem cell culture conditions where they behave alike 
neural stem cells and express neural stem cell markers. In 

adults, glioblastoma multiforme (GBM) represents the most 
common and deadly brain tumor and can be sub-classify in 4 
types based on marker expression and cell phenotype. Though 

to be highly distinct from adult GBM based on the unique 
genetic mutation profile and resistance to temozolomide 

treatment, pediatric glioma may be much closer to GBM 
when analyzed at the chromatin level. Recent progress in 
genetics and chromatin biology suggests that a common 

finality links adult and pediatric glioma. Herein, we will 
discuss the implication of these findings for the development 

of new therapies against these deadly tumors.  
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1. Glioma Classification 

Glioma represents a heterogeneous set of 

diseases, ranging from benign to malignant 
tumors. Of which, glioblastoma multiforme 

(GBM), a grade IV astrocytoma (WHO), 
represents the most common and lethal brain 
malignancy in adults, with a median lifespan 

of 9 to 15 months at time of diagnosis for 
primary GBM. However, current treatments 

regimen are palliative and can only increase 
lifespan by 3-4 months. Treatments involve 
surgical resection, ionizing radiation and 

chemotherapy. An effective treatment is thus 
needed [1-3].  

 Classification of glioma in the 2007 
WHO data is based on histological analysis, 
and tumors are graded according to the level 

of tumors malignancy features, wich 
includes necrosis, vascular proliferation, 

anaplasia and mitotic index [4]. However, 
this classification system remains limited by 

the heterogeneous features of gliomas, 
where it failed to distinguish the 

clinicopathologic stratification of primary 
GBM, which develops de novo, from 
secondary GBM, which develops from 

lower grade diffuse glioma [5, 6]. Recently, 
the 2016 WHO classification of CNS tumors 

uses, for the first time, molecular features in 
parallel to histology characteristics to define 
glioma entities. In the 2016 CNS WHO 

classification, glioblastoma are divided into: 
glioblastoma with IDH-wildtype (about 90% 

of cases), which is associated closely with 
the primary GBM, and glioblastoma with 
IDH-mutant (about 10% of cases), which is 

associated most frequently with secondary 
GBM (Table-1). 

 

Table 1. Characteristics of IDH-wildtype and IDH-mutant glioblastoma* 

Glioblastoma IDH-wildtype IDH-mutant 

Synonym Primary glioblastoma Secondary glioblastoma 

Origin de novo Lower grade diffuse glioma 
Associated GBM subtype MES PN 

Frequency ~90% ~10% 
Median age 62 44 
Median survival 9-15 months 24-31 months 

Location Supratentorial Predominantly frontal 
Necrosis extensive Limited 

(*Adapted from Louis et al. 2016) 
 

Many studies have attempted to group GBM 
into subtypes based on expression profiling 

[7-13]. Phillips et al. in 2006 suggested 
three subclasses based on the dominant gene 
expression patterns of 107 samples using 

DNA microarray [7]. Afterward, Verhaak et 
al. described four subtypes of GBM based 

on a 840 genes profile: classical, proneural 
(PN), mesenchymal (MES) and neural [8]. 
Even though there is no exact GBM 

subgroup definition, there is a clear 
demarcation between PN and MES 

subgroup. The MES subtype has been 
associated with more invasive tumor, which 

is also displaying more necrosis and 
angiogenesis. Primary GBM is predominant 

in the MES group, which is associated with 
poorer prognosis. In contrast, the PN 
subgroup is strongly associated with 

secondary GBM, which has a better 
prognosis [7]. Interestingly, Pillips et al. 

demonstrated a shift in GBM subgrouping 
from PN to MES signature upon tumor 
recurrence [7]. 

 Pediatric brain tumors represent the 
most common solid tumor in children. 

Unlike adult brain tumors, where high-grade 
glioma (HGG) is prevalent, low-grade 
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tumors predominate in childrens [14]. 
Pediatric HGG (pHGG), which comprises 

WHO grade III astrocytoma and grade IV 
GBM, represents approximately 20% of all 

pediatric CNS tumors [15, 16]. Further clear 
distinctions between brain tumors in adult 
and children reside in their natural history, 

location and mutation burden. Most pHGG 
develops de novo and secondary GBM is 

rare [17]. pHGH commonly arises from 
cortex hemispheres as in adults. However, 
cerebellar midline structures such as 

cerebellum, brainstem, thalamus and spinal 
cord also represent common sites for brain 

tumors in childrens but are rarely found in 
adult brain tumors [18-22]. Diffuse intrinsic 
pontine glioma (DIPG) represents about half 

of all pHGG, which is located in the ventral 
pons in the brainstem. DIPG is associated 

with the worse prognosis of all pHGG, with 
less than 10% survival at 2 years, compared 
to 30% for other pHGG. Anatomical 

location of DIPG renders adequate drug 
delivery challenging and surgical resection 

impossible [23]. Wu et al. have identified a 
recurrent mutation in histone H3 (K27M) in 
about 80% of DIPG, which provided a clear 

distinction from pediatric cortical HGG [24]. 
This mutation was also found in pHGG in 

other midline structures. In the 2016 WHO 
CNS classification, DIPG was included in a 
novel entity termed diffuse midline glioma 

H3K27M-mutant. This newly defined group 
of tumors primarily found in the pediatric 

population is characterized by a diffuse 
growth pattern, a midline location and a 
K27M mutation on histone H3 [4, 24, 25]. 

For the purpose of this review, all pediatric 
glioma will be referred as pHGG. 

 

2. The Cell of Origin 

In most cancers, the quest for the identity of 

the tumor-initiating cell (TIC) is the Holy 
Grail as it may provide new avenues to 

develop efficient therapies. As opposed to 
the cancer stem cell (CSC) that ensures the 

growth of the tumor mass, the TIC or cell of 
origin of tumor designates the normal tissue-

resident cell that acquires the initial 
transforming genetic hit(s). In theory, for 

glioma, this cell should be one laying at 
neurogenic regions (i.e. neural stem cell 
(NSC), or progenitor) or a dedifferentiated 

cell. While NSCs are quiescent cells 
displaying extensive self-renewal and 

multipotential potential, neural progenitors 
are more committed cells with limited 
proliferation potential. In the mammalian 

brain, the subventricular zone (SVZ) 
carpeting the lateral ventricles and the 

subgranular zone (SGZ) of the dentate gyrus 
in the hippocampus represent the main 
neurogenic regions [26, 27]. In these 

locations, both stem and progenitor cells 
were characterized based on phenotypical 

markers [28-30]. Oligodendrocyte progen-
itor cells (OPC) are another pool of 
unipotent progenitors broadly dispersed in 

the adult central nervous system. They 
account for 5% of all brain cells and give 

rise to mature oligodendrocytes throughout 
life in both rodents and humans [31-33]. The 
intrinsic regenerative capabilities of these 

cell populations and the histological 
locations of glioma make these cells 

legitimate candidates as the cell of origin. 
Using an elegant genetic strategy and a 
panel of selective markers, these cells were 

categorized as NSCs (GFAP+/NES+/CNP-

/OLIG2-/SOX2+), early glial progenitor cells 

(GPCs) (GFAP+/NES+/CNP-/OLIG2+/SOX 
2+) or OPCs (GFAP-/NES-/CNP+/OLIG2+/ 
SOX2+) [34]. 

 Both in vitro and in vivo 
experimental models have been developed to 

mimic and conceptualize initial events of 
glioma cell transformation. On one hand, 
NSC and astrocyte cultures were established 

from Ink4a/Arf- or Tp53-deficient mice. 
Transduction with constitutively active 

EGFRvIII, myr-AKT or RAS, overexpress-
ion of MYC or activation of PDGFRα, 
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conferred malignant traits to these cells, with 
characteristics reminiscent of HGG. In 

addition, transplanting these cells into 
immunosuppressed mice led to glioma-like 

lesions growth [35-38]. On the other hand, 
genetically engineered mouse models have 
been proven a powerful tool in searching for 

the cell at the origin of glioma development. 
These models involve loss-of-function in 

tumor suppressor genes  or gain-of-function 
in oncogenes. Pioneer evidence involving 
SVZ-resident NSCs as the cells of origin in 

glioma came from the RCAS/tv-a system-
based studies [39]. This system allows 

targeted induction of constitutively active 
forms of oncogenes under the control of tv-a 
in astrocytes (GFAP-tv-a; Gtv-a) or in 

neuroglial progenitors (Nestin-tv-a; Ntv-a). 
In this experimental setup, only the Ntv-a 

line developed glioma-like lesions, 
suggesting that cells within the SVZ may 
represent the cell of origin. Using the same 

experimental setup in Ink4a/Arf-deficient 
mice resulted in the formation of glioma-like 

tumors in GFAP+ cells (Gtv-a/Ink4a-Arf-/- 
line) [39]. More recently, by using an 
identical system targeting 3 distinct cell 

populations (NSCs and OPCs at the SVZ, 
and GPCs at the retrosplenial cortex), 

transgenic mice developed glioma lesion 
displaying different malignancy grades [34]. 
Glioma-like tumors also developed from 

progenitor cells located in the brain white 
matter after in situ exposure to PDGF-

expressing retroviruses [40]. Stereotactic-
guided injection of adenoviruses carrying 
Cre recombinase into the SVZ of adult 

mutant mice containing conditional tumour 
suppressor alleles of Nf1, Trp53, and Pten 

has been shown to induce glioma-like 
lesions [41-44]. Moreover, animal models 
using inducible creER strategies (Nestin-, 

GFAP-, Ascl1- or NG2-directed), exclu-
sively or concomitantly targeting NSCs, 

GPCs or OPCs gave rise to high-grade 
glioma-like lesions in close association with 

the proliferative neurogenic niches and 
discrete cortical zones [41, 45-47]. At last, 

concurrent p53/Nf1 mutations were initiated 
sporadically by usage of Mosaic Analysis 

with Double Markers (MADM) system in 
mice [38]. In this model, sibling mutant and 
wild-type cells are labeled with different 

fluorescent markers (GFP vs. RFP). 
MADM-based lineage tracing revealed 

aberrant growth followed by malignant 
transformation of OPCs, but not of NSCs or 
other neural progenitors, suggesting OPCs 

as the cell of origin in this model even when 
initial mutations occur in NSCs. 

 Although still controversial and 
based on the aforementioned mouse models, 
it is worth to note that brain post-mitotic 

cells (i.e. neurons and astrocytes) could 
represent TICs as these cells share several 

markers with brain stem and progenitor cells 
(i.e. Nestin, GFAP). In this regard, Nestin-
expressing neural cells were observed in 

rodent and human adult brain at four distinct 
sites. Class I cells are among the smallest 

neural cells in the brain and are widely 
distributed. Class II cells are located in the 
walls of the aqueduct and third ventricle. 

Class III cells, which co-express markers 
associated exclusively with neurons, are 

observed only in the hippocampus and 
corpus striatum. Class IV cells are found 
throughout the forebrain and typically reside 

immediately adjacent to a neuron [48]. 
Astrocytes are another potential TICs as 

they share GFAP expression with NSCs 
[46]. Aside from the SVZ, large astrocytes 
were detected in the hippocampus and the 

striatum [49]. This suggests that most 
cerebral differentiated cells experiencing 

defined genetic alterations might undergo 
dedifferentiation to generate a state leading 
to tumor initiation [50]. 

 Nowadays, the cell at the origin of 
gliomas remains a topic of controversy. 

Diverse cell populations in the adult brain 
have proven to be the primer to glioma. 
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Unequivocally determining the identity of 
these cells may open new gates for 

developing targeted therapies for this 
devastating disease. 

 

3. Glioma Stem Cells 
Growing experimental evidence 

supports the presence of a small pool of 
cells, in the tumor bulk, displaying stem 

cell-like features. These cells are responsible 
for tumor growth and maintenance [51, 52]. 
First described in hematopoietic cancers [53-

55], CSCs were described within solid 
tumors as well. Cumulating efforts have 

proven the presence of such cells in different 
solid tumors (i.e. breast, brain, colon, skin) 
[56-60]. These cells are involved in tumor 

recurrence, metastatic process, and 
resistance to treatments [61-63].  CSCs were 

characterized based on cellular properties, 
and phenotypical markers expression [64]. 
 In glioma, CSCs were first reported 

following cell cultures from human biopsies. 
Using stringent culture conditions, a single 

clone with NSC properties developed as a 
floating sphere that could be maintained 
through serial passages [65-67]. In vivo, 

these cells have the capacity to regenerate 
orthotopic glioma in immunodeficient mice 

showing similar characteristics as the 
primary tumor [68, 69]. Under conditions 
promoting differentiation, these cells display 

multipotency as they give rise to both 
neurons and glia, and sometimes 

differentiate into abnormal cells with 
multiple differentiation markers in a way 
that reflects the tumor of origin [65, 68]. 

These cells express transcripts characteristic 
of neural and other stem cells (i.e. 

CD133/PROMININ, SSEA1/CD15, Nestin, 
SOX2, GLI2, MUSASHI1, BMI1, LHX2, 
CD90/Thy1, α6-integrin) (Figure 1) [64, 65, 

70-73]. It should be stressed that the use of a 
combination of markers is necessary to 

identify glioma CSCs as; (i) single markers 
are also expressed by NSCs, progenitors and  
 

Figure 1. Stem Cell Markers in Glioma 
Comparative gene expression analysis using 
RNA in situ hybridization on human glioma is 
showed (brown signal). One tumor displays a 
pro-neural phenotype and the other a 
mesenchymal phenotype. Note the co-expression 
of most markers in both tumors, but with 
preferential enrichment of PROM1, BMI1 and 
EZH2 in the pro-neural sample. The dashed red 
lines indicate PROM1 expression heterogeneity 
within the mesenchymal tumor, suggesting the 
presence of multiple tumor clones. Data were 
extracted from the Ivy Glioblastoma Atlas 
Project (Allen Institute). 
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even post-mitotic neural cells, (ii) 
expression of some of these markers may be 

lost owing to epigenetic silencing, and/or 
(iii) their expression may vary between 

glioma subtypes. In this regard, the 
unequivocal identification of glioma CSCs 
is a must as they form the entity that 

continually fuels the tumor mass, and they 
are responsible for resistance to radiation 

therapy and chemotherapy [74, 75]. In 
addition, these cells could hold for a 
valuable screening platform for new 

therapeutics. In fact, and in contrary to 
glioma cell lines, histological and gene 

expression pattern analyses have shown a 
strong correlation between the original 
patient tumor and tumors derived from 

CSCs [66]. 
 

4. Genetics 

Inhibition of tumor suppressors and 
activation of cell proliferation through 

oncogenes represent the main limitation 
events in cancer development. Induction of 

angiogenesis, DNA dammage repair, 
invasion and drug resistance mechanisms are 
often responsible for the proliferation of 

high grade tumors that are extremely 
challenging to treat and more prone to 

recurrence. 
 In the adult population, TP53, RB1, 
NF1, CDKN2A and PTEN are all tumor 

suppressors found to be deleted or mutated 
in glioma. Inactivation of the p53 pathway 

was also delineated by ARF deletions and 
MDM2 or MDM4 amplifications [76]. 
Aberrations in the RB pathway was mostly 

caused by deletion of CDKN2A/CDKN2B 
followed by CDK4 locus amplification. 

Dysregulation of growth factor signaling 
through amplification and activating 
mutations of receptor tyrosine kinases 

(RTKs) also represent an important genetic 
event. Aberrant expression of proto-

oncogenes such EGFR, ERBB, PDGFRA, 
MET and BRAF has been commonly 

identified (Figure 2) [77]. Activation of 
MGMT through mutation and/or 

methylation of CpG islands within the 
promoter enable a drug resistance 

mechanism. MGMT removes the 
methylations introduced by temozolomide, a 
common chemotherapy drug, thereby 

allowing DNA damage repair [78, 79]. 
Isocitrate dehydrogenase 1 and 2 (IDH) 

mutations have been observed in the 
majority of low-grade gliomas and 
secondary GBM. These mutations have 

influenced the recent 2016 WHO 
classification for CNS tumor [80-84]. IDH1 

mutation results in accumulation of the 
metabolite 2-hydroxyglutarate (2-HG), 
which impairs the activity of TET, a 

methylcytosine dioxygenase, is reflected in 
DNA hypermethylation. Mutations in IDH1 

indirectly influence H3K27 or H3K36 
methylation via 2-HG, which can impair cell 
differentiation [85-87]. 

 In contrast, pHGG is linked to a 
limited number of driver mutations that 

account for aberrant DNA copy number and 
altered gene expression (Figure 2) [88-94]. 
These tumors display aneuploidy, gene 

rearrangements and amplifications, and 
chromosomal gain or loss (i.e. 1q gain, 7 

gain and 10q loss in 30%, 13% and 35% of 
tumors, respectively). Detailed mapping 
revealed numerous focal amplifications of 

genes within RTK signaling pathway and 
cell-cycle regulatory genes (i.e. IGF1R, 

PDGFRB, PDGFRA, MET, PIK3CA, TP53, 
CDK6, CCND1, CCNE1, PARP1), recurrent 
activating somatic mutations of the receptor 

serine/threonine kinase ACVR1/ALK2, 
recurrent gene fusions involving the 

neurotrophin receptor genes NTRK1, 
NTRK2 and NTRK3, and homozygous 
deletions affecting still to date unknown 

genes (i.e. homing at 5q35, 10q25, and 
22q13). A unique feature however of pHGG 

is the presence of somatic mutations 
affecting histone H3 [24, 91]. 
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Specific recurrent mutations in H3F3A 
(encoding histone H3.3) or in the related 

H3B/3C (encoding histone H3.1) led to 
amino acid substitutions at two critical 

positions (namely positions 27 and 34) 
within the histone tail (K27M and G34R/V) 

involved in key regulatory post-translational 
modifications. These mutations were found 

to be specific to pHGG and highly prevalent 
in children and young adults. In addition, 

mutations were found in ATRx and DAXX 
[24, 91]. 

 

 
Figure 2. The road to Cancer in Glioma 

Schematic representation of the sequential genetic and epigenetic modifications leading to 

gliomagenesis is showed. In this model, acquisition of the cancer stem cell phenotype is 
responsible for tumor relapse after radiotherapy and chemotherapy treatments. 
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Interestingly, histone mutations 
segregate frankly depending on the 

anatomical distribution of tumors. 
H3.3G34R/V mutation is found exclusively 

in the cerebral hemispheres, H3.3K27M 
mutation is found throughout the midline 
structures (including the thalamus, 

brainstem, cerebellum, and spine) and 
H3.1K27M mutation is restricted to the 

pons. In addition, other mutations might 
categorize these subtypes (ACVR1 
exclusive to H3.1K27M mutation, and 

CDKN2A/B, EGFR and FGFR1 exclusive 
to H3.3-associated mutations) [18, 93]. A 

small and distinct biological subgroup of 
pHGG also harbors hotspot mutations 
affecting IDH1, BRAF (V600E), MYCN or 

MYC (Figure 2) [93, 95, 96]. Ongoing 
studies are on to classify a subset of tumors 

that present free of the aforementioned 
aberrations. Nonetheless, regarding these 
childhood diseases, there are clear 

differences in location, histology and driving 
epigenetic and genetic alterations. It 

emerges that stratification of pHGG will 
likely be valuable to develop new and 
efficient targeted therapies.  

 
5. Epigenetics 

5.1 The Chromatin 
Chromosomes are structurally 

organized in distinct sub-compartments as 

determined by the local DNA sequence and 
chromatin organization. Euchromatin 

defines “relaxed” chromatin regions 
containing actively transcribed genes. In 
contrast, heterochromatin defines 

“compacted” chromatin regions containing 
tissue-specific and developmental genes (the 

facultative heterochromatin) or gene-poor 
repetitive DNA sequences found at 
centromeric, pericentromeric and telomeric 

parts of chromosomes (the constitutive 
heterochromatin) [97, 98]. Nucleosomes are 

the basic building unit of chromatin and are 
constituted of a 147 bp strand of DNA 

wrapped against a histone octamer 
containing two molecules of each of the four 

histones H2A, H2B, H3 and H4 (the 
nucleosome core particle) [98]. The addition 

of linker histones, such as histone H1, 
increases the amount of associated DNA by 
20 bp to elicit higher levels of chromatin 

compaction and high order chromatin 
structure. Post-translational modifications of 

histones tail, such as methylation, 
acetylation and ubiquitylation can modify 
chromatin compaction and stability. Silent 

chromatin is generally but not exclusively 
associated with tri-methylation of histone 

H3 at lysines 9 (H3K9me3) or 27 
(H3K27me3), while transcriptionally active 
chromatin is associated with histone H3 tri-

methylation at lysine 4 (H3K4me3) or 
acetylation at lysines 9 (H3K9ac) or 27 

(H3K27ac) [97]. 
 
5.2 Histone H3 

The finding that a large proportion of 
pHGG carry mutations in histone H3 

brought renewed interest for the study of 
histone modifications in brain cancer [91]. 
There are 7 variants for histone H3. The 

canonical histones H3.1 and H3.2 are 
encoded by multiple identical genes, 

allowing a high level of transcription. 
Histones H3.1 and H3.2 can be replaced by 
non-canonical histones, which differ by 1-5 

amino-acids at critical residues [99]. In 
contrast to canonical histones which are 

incorporated de novo during DNA 
replication, histone H3.3 is incorporated in 
all cell cycle phases, including G0 [99]. This 

unique feature is thought to be of major 
importance in post-mitotic neurons and in 

the context of aging and senescence [99]. In 
dividing cells, histone H3.3 is preferentially 
located in “open” chromatin regions and is 

also abundant in repeat-rich chromatin 
regions such as pericentric heterochromatin 

and in telomeres where it is trimethylated at 
lysine 9 (H3.3K9me3) and loaded by the 
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ATRx/DAXX chaperone complex [100, 
101]. Histone H3.3K9me3 also inhibits 

endogenous retrovirus activation in mouse 
embryonic stem cells [102]. The ATP-

dependent chromatin remodeler ATRx 
localizes at both telomeres and peri-
centromeric heterochromatin, and germline 

mutations in ATRx are associated with the 
Alpha-thalassemia with mental retardation 

X-linked syndrome [103-105].  
Loss of function mutations in ATRx 

have been identified as “bystander 

mutations” in pediatric gliomas, leading to 
genomic instability, and are also involved in 

the Alternative Lengthening of Telomere 
(ALT) phenotype of telomerase-independent 
cancers [91, 105, 106]. ATRx co-

precipitates with the Polycomb group 
protein B cell-specific Moloney murine 

leukemia virus Integration site 1 (BMI1) and 
histone H3K9me3, and both ATRx and 
BMI1 are enriched at constitutive 

heterochromatin regions [107]. 
 

5.3 Polycomb Group Proteins 
Polycomb group proteins form large 

multimeric complexes involved in gene 

silencing through modifications of 
chromatin organization [108]. They are 

classically subdivided into two groups, 
namely Polycomb Repressive Complex 1 
(PRC1) and PRC2 [109]. The sequential 

histone modifications induced by the PRC2 
complex (which includes EZH2, EED and 

SUV12) and the PRC1 complex (which 
includes BMI1, RING1a, and RING1b/ 
RNF2) allows stable silencing of gene 

expression in euchromatin and facultative 
heterochromatin [110-112].  

The PRC2 contains histone H3 tri-
methylase activity at lysine 27 (H3K27me3) 
and the PRC1 contains histone H2A mono-

ubiquitin ligase activity at lysine 119 
(H2Aub) [110-112]. During mouse 

development, H3K27me3 deposition by 
PRC2 is thought to occur before and be 

required for PRC1 recruitment at 
developmental genes. In somatic cells 

however, the H2Aub mark may be required 
for PRC2 complex maintenance and 

H3K27me3 deposition on the chromatin, 
thus creating a positive feedback loop [113]. 
A number of observations have implicated 

these proto-oncogenes in human cancers 
[114-119]. BMI1 is part of the PRC1 and 

was originally identified as an oncogenic 
partner in lymphomagenesis. BMI1 was 
later found to be overexpressed in several 

cancers and important for cancer cell 
survival in medulloblastoma and 

glioblastoma [70, 120-126]. BMI1 
knockdown in human GBM cells resulted in 
loss of CSC self-renewal and absence of 

tumor formation in grafted mice [70]. 
Interestingly, BMI1 was also reported to be 

over-expressed in cultured neurospheres 
from childhood brain tumors, including one 
midline anaplasic astrocytomas (grade III), 

one medullo-blastoma and one glioblastoma 
[65].  

Hence, BMI1 is over-expressed in 
53% of pHGG in situ and BMI1 inactivation 
in cancerous neurospheres impairs tumor 

formation in mouse xenografts [127]. EZH2 
is also expressed in adult GBM and its 

inactivation impairs cell growth, prompting 
interest as a potential target against gliomas 
[70, 128-130].  

However, while EZH2 generally 
works as a proto-oncogene, it can also 

suppress tumor transformation. Recently, it 
was showed that acute Ezh2 inactivation in 
mouse GBM impaired tumor growth and 

extended lifespan. Surprisingly, prolonged 
Ezh2 inactivation resulted in loss of the 

H3K27me3 mark, activation of some 
pluripotency markers, switch in cell fate and 
aggressive tumor evolution [131]. Thus, loss 

of  H3K27me3-mediated gene repression is 
a prognostic for tumor transformation 

toward a more immature and aggressive cell 
fate.   
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5.4 Chromatin Signature in HGG 
Since the identification of the 

H3K27M mutation, Polycomb group 
proteins became strong candidates as part of 

the missing link between adult and pediatric 
glioma. Pioneer work revealed that K27M 
mutant heterotypic nucleosomes did not 

sequester PRC2 but rather prevented its 
binding [132]. Genome-wide, K27M glioma 

cells displayed highly reduced H3K27me3 
levels, which correlated with increased 
expression of PRC2-repressed target genes 

(i.e. developmental genes) and of some 
cancer-promoting loci. On the other hand, 

PRC2 accumulated at specific H3.3 poor 
loci, resulting in increased H3K27me3 
levels and gene repression[132].  

Since H3K27me3 deposition can be 
reversed by de-methylase activities of the 

KDM6-family proteins JMJD3 and UTX, it 
was tested whether inhibition of KDM6 
using GSK-J4 could increase H3K27me3 

levels and thus impact of tumor growth. 
Notably, K27M-carrying pHGG, but not 

wild type pHGG, were found to be 
specifically sensitive to KDM6 inhibition, 
thus providing the fist hint for possible 

application of epigenetic drug therapy [133]. 
Similarly, Grasso et al. screened chemo-

therapeutic and epigenetic compounds for 
their activity on pHGG. They found that the 
histone deacetylase inhibitor (HDACi) 

panobinostat was effective at reducing 
cancer cell growth in part through induction 

of both H3K27 tri-methylation and H3 
acetylation. The combination with GSK-J4 
also provided “synergistic” activity against 

tumor growth in vitro and in xenograft 
mouse models [134].  

In K27M-carrying glioma, PRC2 
was previously found to accumulate at H3.3 
poor loci, resulting in gene repression [132]. 

One of the loci affected by this phenomena 
is the INK4A locus, the main target of PRC1 

and PRC2 repressive activities [135, 136]. 
The INK4A locus is frequently deleted in 

cancers and encodes for the p16INK4a and 
p14ARF tumor suppressors, which act on 

the Rb and p53 pathways, respectively 
[137]. Notably, EZH2 inhibition with the 

small compounds GSK343 or EPZ6438 in 
INK4A-proficient pHGG carrying the K27M 
mutation resulted in significant tumor 

regression [135]. At the molecular level, it 
was discovered that H3K27M heterotypic 

nucleosomes where hyper-acetylated at 
lysine 27 (H3K27ac), resulting in recru-
itment of the BET bromodomain proteins 

BRD2 and BRD4, of RNA PolII and 
elevated transcription, reminiscent of the 

structure found at “super-enhancers”. 
Pharmaceutical inhibition of BET bromo-
domain proteins with JQ1 in pHGG resulted 

in neural differentiation in part through 
transcriptional down-regulation of “super 

activated” loci, including GLI2, which is 
known to regulates the activity of the 
cancer-promoting sonic hedgehog (Shh) 

pathway [138-141]. Likewise, pHGG 
carrying the G34R/V mutation or SETD2 

loss-of-function have reduced levels of 
H3K36me3, which correlated with 
activation of developmental genes and of 

MYCN [142, 143], altogether suggesting the 
presence of a common “chromatin 

signature” for pHGG. 
 
5.5 The Chromatin Hub 

Although adult and pediatric glioma 
have variable developmental and cellular 

origins and carry distinct combinations of 
genetic anomalies, yet they may share a 
common “chromatin hub”, as suggested by 

their mutual relationship with Polycomb 
group proteins (Figure 3). Many 

transcription factors (TFs), such as SOX2 
and OLIG2, are found in glioma and operate 
as core TFs for gliomagenesis and tumor 

maintenance [43, 65, 144]. By analogy to 
the reprogramming of somatic cells into 

pluripotent stem cells with a core of 4 
master TFs [145], it was shown that over-
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expression of SOX2, OLIG2, POU3F2 and 
SALL2 in differentiated GBM cells could 

re-instate the CSC molecular program and 
drive tumor formation [146]. Likewise, 

ectopic expression of SOX2, OLIG2 and 
ZEB1 was found sufficient to convert tumor 
suppressor-deficient astrocytes into glioma-

initiating cells, and this independently of 
RTK amplification or gain-of-function 

mutations [147]. Interestingly, previous 
work showed that Bmi1 over-expression was 
sufficient to “reprogram” mouse astrocytes 

into neural stem cells [148] or mouse retinal 

progenitors into retinal “stem cells” by 
conferring self-renewal properties [149]. 

 Additional TFs and chromatin 
remodelers, such as TLX, ZFHX4 and 

MLL5, were found to be abundant in glioma 
CSCs and required for their self-renewal 
[150-152]. While the intricate relationship 

between these factors in CSC biology 
remains to be elucidated, one can speculate 

that they form a network of self-reinforcing 
TFs that confer CSC identity in part by 
repressing alternative cell fates.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The Chromatin Hub 

Model of the glioma genetic and epigenetic complexity and evolution over time is showed. 
While genetic complexity within groups and between groups is very large, epigenetic complexity 
tends to diminish, to ultimately reach the least variable constriction point referred to as the 

Chromatin Hub. The Chromatin Hub is defined by the presence of nework of core transcription 
factors (TFs) that are essential to maintain the self-renewal properties of cancer stem cells. 

Targeting Chromatin Hub’s components holds therapeutic promises against glioma but at a risk 
of inducing an irreversible epigenetic drift of the tumor.         
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This led to the proposition that 
epigenetic circuits superimposed upon 

genetic mutations determine key features of 
cancer cells, and possibly the CSC 

phenotype [146]. Notably, glioma cells 
treated with RTK inhibitors can rapidly 
adapt by adopting a “persister-like” state 

involving EZH2 downregulation and KDM6 
upregulation, re-distribution of repressive 

chromatin marks and activation of 
developmental genes [153]. This situation is 
reminiscent of the chromatin phenotype of 

pHGG carrying the K27M or G34R/V 
mutations. Interestingly, MLL5, the most 

divergent member of the mixed lineage 
leukemia (MLL) gene family, is highly 
expressed in adult GBM. MLL5 represses 

H3F3B transcription (encoding for H3.3) 
and this preferentially in CD133+ cells. 

Inactivation of MLL5 increased H3.3 levels, 
leading to loss of specific (yet unchara-
cterized) heterochromatin domains and 

deficiency in CSC self-renewal through 
differentiation [152]. Thus, MLL5 anta-

gonizes H3.3 accumulation (and by 
inference H3.3K27me3 accumulation) to 
promote CSC self-renewal, which is also 

reminiscent of pHGG with H3.3K27M 
mutation.  

The implication of these findings is 
that despite their notable divergences in 
mutational spectrum, developmental time-

point and cellular origin, adult and pediatric 
glioma may both depend on a common 

“chromatin hub” that is critical to sustain 
CSC self-renewal (Figure 3). Targeting 
chromatin hub components may be the key 

to cure disease. 
 

6. Therapeutic Perspectives 

Despite numerous efforts, the 
treatment of glioma remains highly 

challenging and has poorly evolved in the 
past decades. Epigenetic therapies for pHGG 

using KDM6, HDAC, BET or EZH2 
inhibitors show promises in mouse models, 

but still have to show efficacy in patients 
(reviewed in [154, 155]). Combined 

epigenetic therapy using panobinostat and 
GSK-J4 apparently displays synergistic 

effect at suppressing tumor growth [134]. 
GSK-J4 was also reported to inhibit the 
colony formation capacity of freshly isolated 

adult GBM cells in vitro [152]. However, 
none of these treatments were shown to cure 

the disease in mouse models, raising concern 
about their possible translational application 
to humans. 

 BMI1 is implicated in DNA damage 
response and maintenance of genomic 

stability, which may open new avenues for 
multimodal therapies [121, 156-158]. 
Recently, this dual strategy proved to be 

effective in a mouse model of head and neck 
squamous cell carcinoma where BMI1 

inhibition sensitized otherwise resistant 
CSCs to cisplatin treatment and eliminate 
lymph node metastasis and tumor bulk 

[159].  
Notably, a BMI1 inhibitor has been 

tested in human colorectal tumors containing 
CSCs and was shown to inhibit cell growth 
and improve lifespan in grafted animals 

[160]. Notably, panobinostat may sensitize 
cells to DNA damage since it was shown to 

display significant therapeutic activity only 
when combined with radiation treatments in 
clinical assays [154]. Thus, combinatorial 

therapies involving epigenetic drugs and 
classical DNA-damaging agents may 

synergize to eliminate CSC and cure the 
disease. Also, since epigenetic therapy can 
promote epigenetic drift (Figure 3) [131], 

combination with another epigenetic agent 
blocking the alternate differentiation 

program together with radio- or chemo-
therapy may prove extremely effective. 
Extensive characterization of the cancer cell 

response to these epigenetic compounds is 
thus a pre-requisite to an intelligent design 

of drug combinations and treatments. 
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