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Abstract 

        Lipid droplets (LDs) are subcellular organelles that store 

large amounts of the neutral lipids, triglycerides (TG) and/or 

cholesteryl esters (CE). LDs are commonly formed in 

adipocytes, liver cells and macrophages, and their formation 

has been shown to be associated with the progression of 

metabolic diseases, i.e., obesity, fatty liver and 

atherosclerosis. Interestingly, LDs are also found in some 

tumor tissues. We recently showed that LDs are prevalent in 

glioblastoma (GBM), the most deadly brain tumor, but are not 

detectable in low-grade gliomas and normal brain tissues, 

suggesting that LDs may serve as a novel diagnostic 

biomarker for GBM. This short review will briefly introduce 

LD biology, summarize recent observations about LDs in 

several types of cancer tissues, and discuss LD formation in 

GBM. Moreover, we will highlight the role of SOAT1 (sterol-

O transferase 1), a key enzyme regulating CE synthesis and 

LD formation in GBM, in the regulation of SREBP (sterol 

regulatory-element binding protein) activation. The 

therapeutic potential of LDs and SOAT1 will be discussed.   
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Introduction 

        Lipid droplets (LDs) are subcellular 

organelles that are the major storage site of 

neutral lipids, i.e., triglycerides (TG) and 

cholesteryl esters (CE), which form the lipid 

core that is surrounded by a monolayer of 

phospholipids (1-3). LDs have been found in 

most cells, from bacteria (4, 5), yeast (6, 7), 

and plant (8, 9) to mammals (10-12). Many 

terms have been used to refer to LDs, such 

as lipid bodies, adiposomes, spherosomes, 

oil bodies and fat bodies. Nevertheless, LDs 

have only begun to gain significant attention 

in the last few decades.   

Cell biology of LDs 

        LDs are very small organelles found in 

many cells. The number and size of LDs 

vary significantly in different cell types, 

with a diameter usually around 1 µm, but 

rarely larger than 10 µm, although it can be 

>50 µm in white adipocytes (11, 13). LDs 

are very dynamic organelles, and their 

number and size can change rapidly.  

        LDs arise from the endoplasmic 

reticulum (ER), where the enzymes DGAT1 

and DGAT2 (diacylglyceride 

acyltransferase) (14, 15), and SOAT1 and 

SOAT2 (sterol O-acyltransferase), also 

named ACAT1 and ACAT2 (acyl-coenzyme 

A:cholesterol acyltransferase) (16-20), 

convert excess cellular fatty acids and 

cholesterol to TG and CE in the interspace 

between the bilayer leaflets of the ER 

membrane (1, 2, 21). It has been 

hypothesized that the cytoplasmic leaflet of 

the ER membrane encloses the neutral lipids 

and buds from the ER into the cytoplasm to 

form LDs (22). Interestingly, several groups 

have reported that LDs are also observed in 

the cell nucleus (23-25), suggesting that LDs 

may have some function in the nucleus.   

        Hundreds of proteins have been found 

in purified LD fractions, although some of 

them may be included as a result of 

contamination due to the close association of 

LDs with other organelles including the ER, 

endosomes, peroxisomes and mitochondria 

(26, 27). Some proteins were identified as 

peripherally associated proteins and shown 

to regulate LD size and number, including 

the PAT-family of lipid droplet proteins, 

such as perilipin1, perilipin2 (ADRP), 

perilipin3 (Tip47), perilipin4, CIDE (Cell 

Death Inducing DNA Fragmentation Factor) 

proteins and several lipases (28-33). 

Perilipin1 is expressed primarily in adipose 

and steroidogenic cells (34), whereas 

perilipin2 and perilipin3 are ubiquitously 

expressed and serve as the predominant LD 

coat proteins in other tissues (35). 

LDs and cancers 

        Deregulation of LD metabolism has 

been shown to correlate with various 

metabolic diseases including obesity, fatty 

liver, and atherosclerosis (1, 36-38). 

Interestingly, LDs are also observed in 

several types of tumor tissues from cancer 

patients (39-42). Accioly et al. found that 

LDs are present in biopsy samples from 

colon cancer patients (40). They reported 

that LDs were associated with the generation 

of prostaglandin E2 in colon 

adenocarcinoma cell lines. Yue et al. 

observed that CE and LDs are formed in 

high-grade human prostate cancer tissues, 

but not in normal prostate or benign 

prostatic tumor tissues (42). Guillaumond et 

al. reported that CE are present in pancreatic 

ductal adenocarcinoma (PDAC) tumors 

(43). Moreover, LDs were also observed in 

clear-cell renal cell carcinoma (ccRCC) 

patient samples. The study showed that 

overexpression of perilipin2 promoted lipid 

storage and tumor growth in ccRCC 

xenografts model (41). Nevertheless, while 

LDs are found in many cancers, their role in 

tumor pathophysiology has only started to 

be explored. 

LDs and glioblastoma  

        Recent progress in the understanding of 

cancer biology has revealed that metabolism 

reprogramming is a new hallmark of 
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malignancies (44-47). Our group was the 

first to report that lipid metabolism is 

rewired in glioblastoma (GBM) and 

promotes tumor growth (48-53). GBM is the 

most aggressive brain tumor and is also 

referred as grade IV astrocytoma. Despite 

extensive therapies, including surgical 

resection, radiation and chemotherapy, the 

median survival for GBM patients remains 

only 12-15 months from the initial diagnosis 

(54). The biggest challenge for treating 

GBM is the quickly developing resistance of 

tumor cells to therapies, leading to 

inevitable tumor recurrence and treatment 

failure (55, 56).  

        We recently uncovered that SREBP-1 

(sterol regulatory element-binding protein-

1), a master transcription factor in the 

regulation of lipid metabolism (57-59), is 

highly upregulated in GBM and promotes 

fatty acid synthesis (49, 51, 53, 60-62). 

Moreover, we found that GBM cells take up 

large amounts of cholesterol through LDLR 

(low-density lipoprotein receptor) that is 

also upregulated by SREBP-1 (63). It has 

been shown that significant increase in free 

fatty acids and cholesterol can cause ER 

stress and lipotoxicity that ultimately lead to 

cell death (41, 64-71). Interestingly, it is 

unclear how GBM cells are able to prevent 

the lipotoxicity potentially induced by the 

increased fatty acid synthesis and 

cholesterol uptake. 

        Most recently, using electron 

microscopy and fluorescence imaging, we 

observed that tumor tissues from GBM 

patients contain large amounts of LDs  (72), 

suggesting that GBM cells may store excess 

fatty acids and cholesterol into LDs to 

prevent lipotoxicity and ER stress. Our data 

further showed that LDs are only present in 

GBM, and are not detectable in normal brain 

tissues and low-grade gliomas, 

demonstrating that LDs may serve as novel 

diagnostic biomarkers for GBM (72). 

Interestingly, when analyzing tumor tissues 

from a large cohort of GBM patients, we 

found that higher LD prevalence in tumor 

tissues was inversely correlated with overall 

survival (72), suggesting that LDs may play 

an important role in GBM growth.  

SOAT1 and SREBPs 

        Our data showed that SOAT1 is highly 

expressed in GBM tumor tissues and that the 

levels of SOAT1 expression correlated with 

the prevalence of LDs (72). In contrast, 

SOAT2 was not detected in GBM (72), 

which is consistent with a previous report 

showing that SOAT2 is predominantly 

expressed in fetal liver and intestine tissues 

(17). Moreover, our data showed that 

genetic or pharmacologic inhibition of 

SOAT1 markedly reduced CE synthesis and 

LD formation in GBM cells, and suppressed 

GBM growth both in vitro and in orthotopic 

xenograft mouse models (72).        

        Interestingly, we further demonstrated 

that inhibition of SOAT1 significantly 

down-regulated SREBP activation and 

lipogenesis (72). SREBP activation is tightly 

regulated by ER cholesterol (57). Report 

shows that even an increase in ER 

cholesterol as low as 5% could significantly 

impede the trafficking of SREBP from the 

ER to the Golgi, leading to the reduction of 

SREBP-mediated lipogenesis (73, 74). Our 

data suggest that targeting SOAT1 to inhibit 

CE synthesis may cause the significant 

accumulation of cholesterol in the ER, 

leading to the suppression of SREBP 

activation (Figure. 1). It would be important 

to be able to measure ER cholesterol upon 

SOAT1 inhibition; unfortunately, we have 

not been successful, as we encountered 

difficulty to isolate pure ER fractions. 

Moreover, the cholesterol level in the ER is 

very low, corresponding to around 1-2% of 

total cellular cholesterol (75-77); thus, it is 

challenging to make accurate measurements 

for the changes in ER cholesterol with 

current fraction methodology.     
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        The potential of SREBP being a 

molecular target in metabolic syndromes 

and cancer is supported by strong evidence 

(61, 78-80). Nevertheless, although SREBPs 

have been discovered around twenty years 

ago, the development of clinically effective 

inhibitors targeting SREBP has not been 

successful. Our study showing that 

restriction of SREBP in the ER via 

enhancing ER cholesterol level through 

suppressing SOAT1 may be a promising 

strategy to treat metabolic syndromes and 

cancer (72). In fact, it has been shown that 

the SOAT inhibitor, avasimibe, which has 

already been tested in a Phase III clinical 

trial in atherosclerosis patients (81), 

significantly suppressed growth in vitro and 

in vivo in GBM and prostate cancer (72, 82, 

83). Therefore, developing more effective 

inhibitors targeting SOAT1 may bring great 

hope for targeting GBM and other late-stage 

malignancies.  

Future directions 

         Lately, LDs have attracted significant 

attention from researchers in the cancer 

field. The list of the different cancers 

containing LDs is quickly growing. Current 

evidence shows that LDs are mainly formed 

in the tumor tissues from patients at an 

advanced disease stage (42, 72). It would be 

worth examining the prevalence of LDs 

across cancer types and stages, which could 

provide important information about the 

correlation between LD formation and 

cancer progression. Moreover, there are 

many questions regarding the role of LDs in 

tumor tissues: 1) what are the underlying 

mechanisms regulating LD formation in 

tumor cells? 2) what is the exact role of LDs 

in cancer cells? 3) are LD formation and 

hydrolysis correlated with nutrient levels in 

cancer cells? 4) are LDs playing a role in 

tumor resistance to therapies? Undoubtedly, 

addressing these important questions will 

provide us great insights for understanding 

of cancer biology and metabolism 

reprogramming. Furthermore, investigating 

LD metabolism may identify promising 

metabolic targets and novel therapeutic 

approaches for cancer treatment.   
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Figure 1. SOAT1/ACAT1 regulates SREBP activation and GBM growth by promoting 

cholesterol esterification and LD formation. 
A) SOAT1/ACAT1 esterifies excess cellular cholesterol to form CE and LDs, thereby 

maintaining ER cholesterol homeostasis. This reduces the association of N-glycosylated SCAP 

(SREBP-cleavage activating protein) and Insig (insulin-induced gene protein), an ER-anchored 

protein, promoting SCAP/SREBP trafficking from the ER to the Golgi. In the Golgi, two 

proteases sequentially cleave SREBPs and release their N-terminal active forms, which then 

enter into the nucleus to activate lipogenesis gene expression for tumor growth (57, 72). 

B) Inhibition of SOAT1/ACAT1 suppresses cholesterol esterification and LD formation, 

resulting in the accumulation of cholesterol in the ER. This enhances the binding of SCAP and 

Insig, thereby retaining the SCAP/SREBP complex in the ER, and leading to the reduction of 

lipogenesis and tumor suppression.   

CE, cholesteryl esters; LDs, lipid droplets; ER, endoplasmic reticulum; SRE, sterol regulatory 

element; ACC, acetyl-CoA carboxylase; FASN, fatty acid synthase; SCD1, stearoyl-CoA 

desaturase 1; HMGCR, HMG-CoA reductase.  

 

 


