
Internal Medicine Review   Implication of advanced glycation endproducts (AGEs) related to 

their receptor RAGE and (Glo-I) in chronic liver disease and (HCC)    May 2017 
 
 

1 

Copyright 2017 Internal Medicine Review. All Rights Reserved. Vol 3, Issue 5. 

 

Implication of advanced glycation endproducts (AGEs) related to their receptor 
RAGE and glyoxalase-I (Glo-I) in chronic liver disease and hepatocellular 

carcinoma (HCC) 
 

Author 

Marcus Hollenbach 

Department of Medicine, 
Neurology and Dermatology 
Division of Gastroenterology 
and Rheumatology 

University of Leipzig 

marcus.hollenbach@web.de 

 
 

 

 

 

 

 

 

 

 

 

Abstract 

The glyoxalase system is formed by the enzymes glyoxalase-I 
(Glo-I) and glyoxalase-II (Glo-II) and is responsible for the 
detoxification of methylglyoxal (MGO). MGO is a by-product 
in glycolysis, threonine-catabolism and ketone bodies pathway 
leading to formation of advanced glycation endproducts 
(AGEs) and oxidative stress. AGEs bind to their receptor 
RAGE and activate pro-inflammatory transcription factors 
such as NF-κB by means of ERK1/2, PI3K, JNK and others. 
This review focuses on implication of Glo-I/AGE/RAGE 
system in chronic liver disease and HCC. Recent work showed 
importance of AGEs and RAGE in the latter. Both have been 
upregulated in fibrosis and silencing of RAGE reduced 
fibrosis and tumor growth of HCC. In contrast, Glo-I was 
demonstrated to be involved in development and progression 
of cirrhosis and new data offer Glo-I as an innovative target 
for antifibrotic therapy.  
In a conclusion, there is growing evidence regarding 
involvement of Glo-I/AGE/RAGE system in chronic liver 
diseases with an interesting new therapeutic opportunity. 
These findings need further elucidation in preclinical and 
clinical studies. 
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Abbreviations: 

AGEs   advanced glycation endproducts 
AKT   protein kinase B 
EP   ethyl pyruvate 
ET-1   endothelin-1 
Glo-I   glyoxalase-I 
Glo-II   glyoxalase-II 
GSH   L-glutathione 
HCC   hepatocellular carcinoma 
HEP   hepatocytes 
HSC   hepatic stellate cells 
JAK2   Januskinase 2 
JNK    c-Jun N-terminal kinase 
KC   Kupffer cells 
LSEC   liver sinusoidal endothelial cells 
MAPK   mitogen-activated protein kinase 
MCD   methionine cholin deficient diet 
MG-H1  5-hydro-5-methylimidazolone 
MGO   methylglyoxal 
NAFLD/NASH non-alcoholic fatty liver disease / steatohepatitis 
NF-κB   nuclear factor-κB 
NO   nitric oxide 
PI3-K    phosphoinositide 3-kinase 
RAGE   receptor for advanced glycation endproducts 
sRAGE  soluble form of RAGE 
ROS   reactive oxygen species 
STAT1  signal transducer and activator of transcription-1 
TGF-β   transforming growth factor beta 
THP   tetrahydropyrimidine 
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1. Introduction 
Oxidative stress (ROS) leading to 

repetitive liver inflammation is responsible for 
development of chronic liver disease. The 
initial damage of hepatocytes is followed by 
release of pro-inflammatory cytokines and 
finally activation of hepatic stellate cells 
(HSC). Activated HSC transform to 
myofibroblasts, lead to deposition of collagen 
and finally fibrosis and cirrhosis. Several 
molecular mechanism are involved in this 
complex interplay, nevertheless the critical 
step is the activation of HSC by ROS. This 
review will focus on the glyoxalase-I (Glo-I) 
and related advanced glycation endproducts 
(AGEs) with their receptor RAGE in 
generation and detoxification of ROS. Recent 
work of Glo-I and (R)AGE in chronic liver 
disease with key aspect to fibrosis and 
cirrhosis will be highlighted.  
 

2. Development of chronic liver disease 
and cirrhosis 

 End stage liver diseases are mainly 
caused by viral hepatitis, alcoholism, 
nonalcoholic fatty liver disease or 
steatohepatitis (NAFLD/NASH) or rare 
autoimmune and hereditary disorders. 
Thereby, liver cirrhosis belongs to the global 
burden of diseases responsible for more than 
one million deaths p.a. 1. Cirrhosis is 
characterized by altered liver anatomy and 
reduced liver function. Structural alterations 
comprise the appearance of regenerative 
nodules, hepatocyte ballooning, accumulation 
of fibrotic tissue, disturbed microcirculation, 
angiogenesis and sinusoidal collapse with 
defenestration and development of a basement 
membrane 2. Beside of the reduced liver 
function, these pathological alterations lead to 
elevation of intrahepatic resistance indicated 
by increased portal pressure with development 
of ascites and esophageal varices 3,4. 
Nevertheless, portal hypertension is being 
caused by both, structural alterations of liver 
microarchitecture and hepatic endothelial 
dysfunction. The latter is characterized by an 

imbalance of vasoactive components. In fact, 
there is an hyperresponsiveness and 
overproduction of vasoconstrictors (mainly 
endothelin-1 (ET-1)) and an 
hyporesponsiveness and reduction of 
vasodilators (mainly nitric oxide (NO)) in the 
vascular bed of the liver 5–7. Despite this 
hypoactive endothelium in hepatic 
microcirculation, portal hypertension leads to 
arterial vasodilation, formation of collateral 
vessels and hyporesponsiveness to 
vasoconstrictors due to hyperactive 
endothelium in splanchnic and systemic 
circulation with increased NO production. 
Finally these alterations result in elevated 
blood flow to portal vein and a vicious circle 
of disease 8–11. 

The underlining molecular mechanism 
for development of fibrosis, cirrhosis and 
portal hypertension have intensively 
investigated over the last years. Hepatic 
stellate cells (HSC) are the main driver for 
accumulation of fibrosis and increased 
intrahepatic vascular resistance. HSC are 
pericytes and are quiescent but became 
activated upon various stimuli and transform 
to myofibroblasts 12. This activation process is 
a complex process involving parenchymal and 
nonparenchymal cells and triggered via 
inflammatory processes 13. Direct 
deterioration of hepatocytes (HSC) result in 
the release of ROS, DNA and damage-
associated molecular pattern (DAMP) leading 
to activation of Kupffer cells (KC) production 
of pro-inflammatory cytokines such as TNF-α 
and IL-6 as well as profibrotic factors 14–16. As 
a consequence of these induced inflammatory 
processes, activated KC stimulate HSC 
subsequently leading to production and 
deposition of collagen 17. This stimulation can 
be effected directly by the deleterious agent 18 
or via TGF-β dependent mechanisms 19 
leading to secretion of TNF-α, IL-6, TIMP-1, 
MCP-1, collagen-I and α-SMA 20–22. As 
mentioned above, pro-inflammatory factors 
(TNF-α, IL-1β, IL-6) are also involved in the 
activation of HSC. In this regard activation of 
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rho kinase, transcription factor NF-κB and 
subsequent overexpression of pro-
inflammatory cytokines are important 
pathways 23–25. 

Another important key player in 
development of fibrosis are liver sinusoidal 
endothelial cells (LSEC). They form the first 
line of defense protecting the liver from 
injury. Inflammation by LPS or ROS resulted 
in dysfunction of LSEC 26. In this regard, 
disturbed regulation of NO-production in 
cirrhosis depends on activity of endothelial 
NO-Synthase (eNOS) and increased 
degradation due to phosphodiesterases, i.e. 
PDE-5 27. Although eNOS expression is 
upregulated in sinusoidal area in cirrhosis, 
eNOS activity has been shown to be reduced 
by caveolin-eNOS-binding 28 and was 
diminished by several post-translational 
modifications of the endothelial nitric oxide 
synthethase (eNOS) 9. In contrast, in 
splanchnic circulation eNOS is upregulated 9 
with increased enzyme activity in portal 
hypertension and regulated by 
phosphorylation of protein kinase B (Akt) 29. 
Finally, all these alterations result in a 
hyperdynamic circulation with elevated blood 
flow to portal vein and further increase of 
portal pressure 8–10.  

In a conclusion, cirrhosis demonstrates 
the end stage of liver disease with disturbed 
liver architecture and impaired liver function. 
Generation of ROS and stimulation of various 
inflammatory pathways are a critical step in 
activation of HSC as the main driver for 
fibrosis. Despite these findings, the use of 
antioxidants (vitamin E, N-acetylcysteine, 
coenzyme Q and others) in patients with 
alcoholic liver disease have failed to show an 
efficacy in improving disease conditions 30–32.  
 

3. Glyoxalase-system 
An important component in regulation 

and formation of ROS and oxidative stress 
comprises the glyoxalase-system. This 
enzymatic system was discovered firstly in 
1913 from the groups of Dakin / Dudley and 

Neuberg 33. The glyoxalase-system constitutes 
of two cytosolic enzymes, glyoxalase-I (Glo-I, 
EC 4.4.1.5) and glyoxalase-II (Glo-II, EC 
3.1.2.6.). Glo-I catalyzes the conversion of α-
oxo-aldehydes like methylglyoxal (MGO) into 
the hemithioacethal S-D-Lactoylglutathion 
using L-glutathione (GSH) as cofactor. 
Further substrates of Glo-I are 
hydroxypyruvaldehyde, 
hydroxypyruvataldehydphosphate, glyoxal, 
phenylglyoxal, 4,5-dioxovalerate, alkyl- and 
arylglyoxales 34–37. Glo-II hydrolyses the 
reaction of S-D-Lactoylglutathion to H2O and 
D-lactate with regeneration of GSH (fig. 1). 
Thereby demonstrates Glo-I rate limiting step 
36,38.  

The glyoxalase enzymes are ubiquitary 
found in all animate beings and are mainly 
located in the cytosol and partly in 
mitochondria 39. Their predominant cellular 
function is the detoxification of MGO. MGO 
is the main subtrate of Glo-I 40 and 
demonstrates a reactive carbonyl compound 
that is formed as a by-product in glycolysis 41, 
ketone body metabolism and threonine 
catabolism 42–44. MGO could regulate cellular 
processes in under physiological conditions 
45,46 but leads to cell cytotoxicity in high 
concentrations through reaction with 
nucleotids, phospholipids and proteins 47,48 
resulting in formation of „advanced glycation 
endproducts“ (AGEs). MGO lead to 
production of ROS via AGEs and binding to 
their receptor RAGE or non-enzymatic via 
direct reaction with hydrogen peroxide 49.  

Important MGO-derived AGEs are the 
non-fluorescent products 5-hydro-5-
methylimidazolone (MG-H1) and 
tetrahydropyrimidine (THP) as well as the 
fluorescent product argpyrimidine 50,51. Other 
non-MGO-derived AGEs comprise Nε-
carboxymethyllysine (CML), pyrraline or 
pentosidine 52. The effects of AGEs are 
mediated by their receptor system, which 
could be generally divided into two 
categories. The receptor for AGEs (RAGE) 
facilitates generation of ROS, inflammation, 
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angiogenesis and proliferation 53,54. In 
contrast, AGE receptors (AGE-Rs), for 
instance AGE-R1, are responsible for 
detoxification and clearance of AGEs 55. Upon 
binding of AGEs to RAGE various signal 
transduction pathways are activated. Recent 
studies showed involvement of the 
extracellular signal-regulated kinase 1/2 
(ERK1/2), phosphoinositide 3-kinase (PI3-K) 
/ protein kinase B (AKT), Januskinase 2 
(JAK2) and RhoGTPases finally resulting in 
activation of NF-κB and production of pro-
inflammatory cytokines (see fig. 2) 56. In 
addition, stimulation of RAGE resulted in 
activation of transforming growth factor 
(TGF-β) pathway and induces vascular 
endothelial growth factor (VEGF) 
overexpression 54.  

Glo-I is a dimer and consists in 
mammalian of two identical subunits with a 
molecular mass of 43-48 kDa 57. Each subunit 
contains an zinc ion into its active center, 
whereas the apoenzyme remains catalytically 
inactive 40,58. Spatial analyses revealed 
octahedral arrangement of Glo-I 51,59. Protein 
sequence of Glo-I consists of 184 amino acids 
with posttranslational modification of n-
terminal met 59. Furthermore, association of 
distinct Glo-I phenotypes and Glo-I SNPs 
with diabetes 60, cardiovascular diseases 61 
schizophrenia 62, autism 63,64, anxiety 65 and 
cancer 66,67 was observed. These findings led 
to preliminary anti-tumor effects of Glo-I 
inhibition by siRNA or enzymatic inhibition 
in different cancer models 68–71 and an Glo-I 
inducer formula showed improved glycemic 
control and vascular function in 29 obese 
patients 72. Furthermore, several anti-
inflammatory and antitumor agents showed 
inhibitory effects to Glo-I, e.g. S-ρ-
bromobenzylglutathione or S-ρ-
bromobenzylglutathionecyclopentyldiester 
69,73, methotrexate 74, indomethacin 75, 
troglitazone 76 and flavanoids 77,78.  

Glo-II is a monomer with two different 
domains and a molecular mass between 18 
und 29 kDa 79. Gene locus of Glo-II is 

determined on chromosome 16 80 with 
expression of only one phenotype 81. The 
function of Glo-II is conversion of S-D-
Lactoylglutathion to D-lactate and 
regeneration of glutathione. 

In summary, the glyoxalase system is 
essential for detoxification of MGO to prevent 
formation of AGEs and oxidative stress and is 
involved in different pathophysiological 
inflammatory processes.  
 

4. Glo-I/AGE/RAGE in fibrosis, 
cirrhosis and NAFLD/NASH  

4.1.Glo-I: 
 Despite of the essential role of Glo-I for 
prevention of MGO-induced inflammation, 
data about Glo-I in fibrosis, cirrhosis or non-
alcoholic fatty liver disease (NAFLD/NASH) 
are lacking. Therefore, our group analyzed 
Glo-I in a CCl4-model of cirrhosis 82,82. Wistar 
rats were treated with inhalative CCl4 three 
times a week to induce early cirrhosis without 
ascites after 8 weeks or advanced cirrhosis 
with ascites after 12 weeks. Furthermore, we 
isolated primary liver cells from cirrhotic and 
noncirrhotic livers by means of portal vein 
perfusion and analyzed Glo-I. Finally, we 
determined the effect of Glo-I enzyme 
modulation via ethyl pyruvate (EP, see below) 
in vivo. Glo-I could be detected in HEP, HSC 
and LSEC with highest expression on protein 
and mRNA levels in HEP. In CCl4-model of 
cirrhosis, Glo-I expression was reduced in 
early and advanced cirrhosis in both, whole 
liver and primary liver cells on protein and 
mRNA levels (fig. 3 A). We observed a 
greater reduction of Glo-I with increasing 
severity of liver disease (8 weeks vs. 12 weeks 
CCl4-treatment). Therefore, we hypothesized 
that reduced expression of Glo-I is 
accompanied by elevated levels of MGO, as 
mentioned before 69. Indeed, our analysis 
revealed significantly elevated levels of MGO 
in cirrhosis measured via ELISA (fig. 3 B). 
Furthermore, we could show that, beside of 
reduction of Glo-I, advanced cirrhosis showed 
elevation of RAGE (“Author” et al., AASLD 
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2015, abstract ID1519).  
 To get further insights in participation of 
Glo-I in cirrhosis we performed in vitro and in 
vivo experiments with the anti-inflammatory 
drug EP modulating Glo-I. EP is an α-oxo-
carbonic acid and ester of pyruvate. EP was 
used due to anti-inflammatory effects of 
pyruvate but low stability in aqueous solution 
83. Therefore, EP constitutes a more stable 
compound and exert anti-inflammatory and 
protective effects in ROS-mediated models of 
ischemia and reperfusion 84–86, hemorrhagic 
shock 87, septic shock 88,89, cecal ligation and 
perforation 90, acute renal failure 91,92, 
pancreatitis 93–96, thermal injury 97, brain 
injury 98–102, cardiac injury 103,104, retinal 
damage, uveitis and cataract 105–110. 
Furthermore, effect of EP on RAGE was 
analyzed in several studies showing reduction 
of RAGE expression upon EP treatment 111,112. 
The molecular basis for the reduced 
production of TNF-α, IL-6, HMGB1, iNOS 
and NO as well as the prolonged survival in 
animals treated with EP was not fully 
elucidated. However, our former work 
demonstrated EP as an inhibitor of specific 
Glo-I activity providing a new mechanism for 
anti-inflammatory effects of EP 113. Since EP 
showed protective effects in acute liver failure 
114–117 and development of fatty liver 118 we 
analyzed effect of EP on activation of HSC 
stimulated with LPS, as it might occur in an 
initial stadium of cirrhosis. Stimulation of 
HSC with LPS for 24h led to increased levels 
of α-SMA and collagen-I indicating activation 
of HSC and production of collagen deposit. 
This stimulation could be abrogated by 
modulation of Glo-I activity by means of EP. 
Underlining mechanisms involve stimulation 
of Nrf2 as well as reduction of NF-κB and 
ERK/pERK by EP 82. Furthermore, we used 
EP in vivo: Wistar rats were treated with CCl4 
for 12 weeks and i.p.-injected either with 
40mg/kg b.w. EP or saline. After 12 weeks 
livers were stained with Sirius red indicating 
collagen deposit. EP treated rats revealed 
significantly less Sirius red staining and 

consecutive less fibrosis (fig. 3 C). 
In summary, targeting Glo-I with EP 

in cirrhosis demonstrated a promising 
therapeutic option and offers and innovative 
target in liver disease induced by oxidative 
stress (see fig. 2).  

 
4.2.AGEs: 

 The demonstrated role of Glo-I, AGEs 
and RAGE for inflammatory processes also 
would suggest an involvement of AGEs in 
inflammatory liver disease. Several groups 
analyzed AGEs in liver fibrosis, cirrhosis and 
NASH. Ahmed et al. examined protein 
glycation, oxidation and nitrosation marker 
residues as well as free adducts in portal, 
hepatic and peripheral venous blood plasma of 
cirrhotic patients. They found elevated 
extraction of methylglyoxal-modified proteins 
in cirrhotic subjects compared to controls 119. 
These findings were supported by another 
work measuring levels of AGEs in blood 
plasma of cirrhotic patients. Significantly 
elevated concentrations of fluorescent AGEs 
and CML were found in cirrhosis. Also, CML 
levels correlated with severity of disease 120. 
In addition, Yagmur et al. found increased 
concentrations of CML in fibrosis and 
cirrhosis 121 and AGEs measured by 
fluorescence spectroscopy were also 
significantly elevated in cirrhosis compared to 
controls 122. On the other hand, in vitro 
treatment of HSC with AGEs resulted in 
enhanced production of oxidative stress 
providing evidence of AGEs-involvement in 
fibrosis 123. Conversely, oxidative stress was 
found to elevate levels of CML in rats 124. 
Thereby, incubation of HSC with AGEs led to 
elevation of α-SMA, TGF-β and collagen-I 
125. In addition, treatment of rat hepatocyte 
cultures with AGEs resulted in reduced cell 
viability and administration of ethanol to 
Wistar rats led to elevated levels of AGEs in 
rat livers 126. In a translational study, a 
positive correlation of CML-AGEs with liver 
stiffness as indicator for fibrosis in patients 
with chronic hepatitis C was found (r=0.5731, 
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p<0.001). In vitro data revealed in this work 
enhanced cell proliferation of HSC treated 
with BSA-AGEs (CML) and increased 
production of α-SMA. Furthermore, AGEs 
were found to induce autophagy which 
subsequently contributes to the fibrosis in 
patients with chronic hepatitis C 127. These 
results were supported by the finding, that 
inhibition of CML resulted in attenuation of 
CML-induced levels of α-SMA and ROS in 
HSC 128. In contrast, in another study 
intraperitoneally administration of AGE-rat 
serum albumin (CML) revealed increased 
levels of α-SMA without influence on 
fibrosis. However, additional administration 
of AGE-rat serum albumin to rats underwent 
bile-duct ligation for induction of fibrosis 
showed increased hydroxyproline, Sirius red 
content and α-SMA indicating elevated 
fibrosis 129. 
 AGEs have also been implicated in 
fibrosis in models of NASH. Hepatic steatosis 
showed accumulation of CML and CML was 
associated with grade of hepatic inflammation 
and gene expression of inflammatory markers 
(PAI-1, IL-8 and CRP) 130, AGEs have also 
been shown to be involved in etiology of 
insulin resistance and diabetes, which are risk 
factors for development of NAFLD 131. Also, 
rats fed with a diet rich in AGEs showed 
elevated oxidative stress and hepatic 
inflammation leading to NASH 132. 
Additionally, high dietary AGEs increased 
hepatic AGEs levels and induced liver injury, 
inflammation and liver fibrosis via oxidative 
stress in activated HSC 133. Recently, the 
molecular basis for involvement of AGEs in 
NASH was discovered. AGEs induce NOX2 
leading to downregulation of Sirt1/Timp3 
finally resulting in activation of TNF-α 
converting enzyme and inflammation 134.   
 Having the growing evidence of AGEs 
in fibrosis and chronic liver disease in mind, 
several studies analyzed the effect of AGEs-
reduction on inflammation and fibrosis in 
NASH. Tang et al. found that the anti-
inflammatory drug curcumin eliminated the 

effects of AGEs in HSC by interrupting leptin 
signaling and activating transcription factor 
Nrf2, which led to the elevation of cellular 
glutathione and the attenuation of oxidative 
stress 135. Also, curcumin showed reduced 
AGEs-induced activation and proliferation of 
HSC and induced gene expression of AGE-
clearing receptor AGE-R1 136. In another 
study the LDL-lowering drug atorvastatin 
decreased levels of AGEs in patients with 
NASH and dyslipidemia leading to improve 
of steatosis and nonalcoholic fatty liver 
disease activity score 137. Miura et al. could 
further show, that combination therapy of 
telmisartan and nateglinide reduced levels of 
AGEs in rats leading to amelioration of 
insulin resistance 138. Another approach 
evaluated effects of aqueous extracts from 
Solanum nigrum (AESN). AESN could 
reduce the AGE-induced expression of 
collagen-II, MMP-2 and α-SMA in HSC. 
Also, AESN improved insulin resistance and 
hyperinsulinemia and downregulated 
lipogenesis finally prevention fibrosis 139.  
 Although the results of the 
aforementioned studies giving evidence for 
involvement of MGO-related AGEs in chronic 
liver disease, mainly CML was investigated. 
Therefore, it should be considered that CML-
AGEs are rarely produced via reaction of 
MGO and are more likely to be formed in 
lipoxidation and glycoxidation independent of 
MGO 140.  
 

4.3.RAGE: 
 RAGE is a pattern recognition multi-
ligand cell surface receptor that belongs to the 
immunoglobulin superfamily with a molecular 
mass of 47 to 55 kDa. RAGE expression is 
usually low but elevated under inflammatory 
conditions such as diabetes, cardiovascular 
diseases or cancer 141. RAGE has been shown 
to be activated by MGO- and non-MGO-
derived AGEs and activation of RAGE leads 
to intracellular signaling cascades resulting in 
inflammation, proliferation and angiogenesis 
mediated by NF-κB 142. Several studies 



Internal Medicine Review   Implication of advanced glycation endproducts (AGEs) related to 

their receptor RAGE and (Glo-I) in chronic liver disease and (HCC)    May 2017 
 
 

8 

Copyright 2017 Internal Medicine Review. All Rights Reserved. Vol 3, Issue 5. 

 

analyzed relevance of RAGE-activation in 
fibrosis: Goodwin et al. generated AGE-rat 
serum albumin (mainly CML) and illustrated 
that treatment with AGE-rat serum albumin 
resulted in raised oxidative stress. 
Interestingly, levels of RAGE, α-SMA, 
hydroxyproline and Sirius red (indication of 
fibrosis by the latter three) were stimulated in 
a fibrosis model of bile-duct ligation (BDL) if 
the animals receive additional AGE-rat serum 
albumin 129. Another study confirmed 
predominant expression of RAGE in HSC. 
RAGE was stimulated in HSC during 
transformation to myofibroblasts and RAGE 
was colocalized with α-SMA and induced by 
TGF-β. RAGE was predominantly found in 
filopodial membranes of myofibroblasts 
suggesting a role of RAGE in spreading and 
migration of activated HSC in fibrogenesis 143. 
Also, elevated expression of RAGE was 
confirmed in activated HSC and LSEC in a 
fibrosis model of bile-duct-ligation. RAGE-
expression significantly raised through AGE-
serum albumin and TNF-α but did not alter 
HSC proliferation, apoptosis or fibrosis signal 
transduction 144. Serban et al. further analyzed 
regulation and crosstalk of RAGE in fibrosis. 
They found that AGEs-induced RAGE 
upregulation resulted in induction of TGF-β, 
TNF-α and IL-8. Furthermore, it was 
propagated that there is an inhibitory crosstalk 
between TGF-β and RAGE since RAGE also 
stimulated the anti-inflammatory cytokines 
IL-2 and IL-4 145.  
 To further analyze role of RAGE in 
fibrosis, recent studies investigated effect of 
RAGE inhibition. Firstly, the anti-
inflammatory drug curcumin (also reducing 
AGEs, see above) inhibited the AGEs-induced 
gene expression of RAGE via elevation of 
PPAR-γ 146. Furthermore, RAGE expression 
was diminished by means of RAGE siRNA in 
primary rat HSC resulting in downregulation 
of IL-6, TNF-α and TGF-β 147. The authors of 
the latter study conducted a subsequent in vivo 
approach analyzing effect of RAGE siRNA in 
an olive-oil model of fibrosis. RAGE siRNA 

was injected twice weekly in the tail vein of 
Sprague-Dawley rats. After six weeks reduced 
expressions of RAGE, TNF-α, IL-6, 
extracellular matrix, hyaluronic acid and 
procollagen III were found. Also, activation of 
HSC and NF-κB was reduced in siRNA 
treated animals attenuating the initiation and 
progress of fibrosis 148. Additional studies 
revealed protective effects of anti-RAGE 
antibodies in BDL-induced acute liver injury 
149,150.  
 Beside it’s implication in BDL- and 
pharmacological models of fibrosis, RAGE 
has been involved in development of NAFLD. 
Methionine cholin deficient (MCD) diet 
caused steatosis and significantly increased 
RAGE, pro-inflammatory cytokines and 
fibrosis 133. Recently, fatty acids stimulated 
CML accumulation and subsequently elicit 
RAGE induction 130. Another group found 
upregulation of RAGE in the liver of aged 
mice with consecutive elevated oxidative 
stress shown by analysis of malondialdehyde. 
Blocking of RAGE by anti-RAGE-antibody 
revealed in this work prolonged survival of 
animals 151.  
 These findings suggest that activation of 
RAGE is a major driver for fibrosis and 
inhibition of RAGE could prevent initiation 
and progress of extracellular matrix 
deposition. 
  

5. Glo-I/AGE/RAGE in HCC 
 Hepatocellular carcinoma (HCC) 
constitutes the sixth most cancer disease and 
third most cause of cancer-related mortality 
152. About 90% of HCC base upon 
development of cirrhosis, therefore cirrhosis 
demonstrated the most important risk factor 
for HCC 153. During tumorigenesis, 
dysregulation of cell proliferation, invasion, 
metastasis and angiogenesis occur. These 
alterations were indicated, amongst others, by 
elevated expression of transcription factors 
IGF and FGF 154, Snail 155, PDGF 156 and 
VEGF 157. 
 Recent work analyzed role of Glo-I in 
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hepatocellular carcinoma (HCC). Glo-I 
mRNA was upregulated in HCC tissue and 
Glo-I siRNA knockdown resulted in reduced 
proliferation of Hep3B, SK-HEP-1 and 
SMMC-7721 HCC cell lines and was 
accompanied by elevated levels of MGO 158. 
Another study revealed genetic amplification 
and upregulation of Glo-I. Knockdown of 
Glo-I by means of sh-RNA led to inhibition of 
tumor growth and induction of apoptosis in 
primarily cultured HCC 159. Furthermore 
effects of the Glo-I modulator EP on HCC we 
studied. EP treatment on SMMC-7721, 
HepG2, and HCC-LM3 cell lines showed 
reduced proliferation indicated by MTT assay 
and induced apoptosis in flow cytometry and 
TUNEL assay. EP also reduced tumor volume 
in xenograft model and lowered levels of 
HMGB1, RAGE, MMP9 and Akt 160. 
Nevertheless, distinct role of Glo-I in HCC 
remains preliminary and need to be confirmed 
in additional studies. 
 In contrast, AGEs and RAGE have 
intensively studied in HCC: serum levels of 
AGEs were found to be raised in patients with 
HCC without hepatitis B or C infection. AGEs 
were significantly higher in HCC patients 
compared with NASH and control subjects 
(9.1±2.7, 5.2±1.7, 3.5±1.2 U/ml. p<0.05) 161. 
Furthermore, levels of the soluble form of 
RAGE (sRAGE) were shown to predict tumor 
progression in HCC patients undergoing 
transarterial chemoemobilisation (TACE) in a 

first proof-of-concept study 162. Another 
translational study confirmed overexpression 
of RAGE and sRAGE in HCC in a small 
cohort of 10 patients and showed reduced 
cellular growth and DNA synthesis upon 
RAGE knockdown by means of siRNA. Also, 
stimulation of RAGE with the ligand HMGB1 
induced cell proliferation and activation of 
NF-κB in Huh7 cells 163. Several further 
studies showed importance of RAGE for 
proliferation 164, angiogenesis 165 and invasion 
166 of HCC and confirmed reduced tumor 
growth by means of RAGE inhibition 167,168. 
In contrast, in a case-control-cohort mainly in 
hepatitis-related HCC, levels of sRAGE and 
CML-AGEs were inversely associated with 
HCC 169. This study showed some limitations, 
mainly men and smokers were included. 
Nevertheless, further analysis particularly in 
larger populations is necessary.  
  

In a conclusion, Glo-I is responsible 
for detoxification of MGO and reveals 
essential role for prevention of MGO-induces 
oxidative stress through formation of AGEs 
and binding to RAGE. Recent work 
highlighted beside importance of RAGE and 
AGEs in fibrosis and HCC the role of Glo-I 
cirrhosis. In this regard, the Glo-
I/AGE/RAGE system indicates an innovative 
and promising target in developing cirrhosis 
and chronic liver disease.  
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Title and legends to all figures 
Figure 1: Glyoxalase-system.  
Glyoxalase I and glyoxalase II comprise the 
glyoxalase system for detoxification of MGO. 
Glutathione is necessary as cofactor and is 
regenerated by Glo-II. Adapted from 37. 
 
Figure 2: Impact of Glo-I and (R)AGE in 
cirrhosis. 
MGO reacts with proteins, nucleotids and 
lipids leading to formation of AGEs. AGEs 
bind to RAGE and activate several signal 
pathways (including MAPK (ERK1/2, p38, 
JNK), PI3-K/AKT and JAK2/STAT1) finally 
leading to activation of NF-κB. In a 
consequence, the induced production of TGF-
β and pro-inflammatory cytokines activate 
quiescent stellate cells. HSC transform to 
myofibroblasts and produce profibrotic factors 
and collagen. The collagen deposition in the 
liver will lead to fibrosis and finally cirrhosis. 
Reduction of Glo-I will perpetuate both, 
initiation and progression of cirrhosis due to 
increase of MGO and a vicious circle of 
disease. MGO: methylglyoxal. AGEs: 

advanced glycation endproducts. RAGE: 
receptor for advanced glycation endproducts. 
Glo-I: glyoxalase-I. HSC: hepatic stellate 
cells. MAPK: mitogen-activated protein 
kinase. PI3-K: phosphoinositide 3-kinase. 
AKT: protein kinase B. JAK2: Januskinase 2. 
STAT1: signal transducer and activator of 
transcription-1. JNK: c-Jun N-terminal kinase: 
NF-κB: nuclear factor-κB. 
 
Figure 3: Glyoxalase-I in CCl4-induced 
cirrhosis. 
A, Glo-I expression was reduced in early (8 
wk CCl4-treatment) and advanced (12 wk 
CCl4-treatment) cirrhosis in Western blot. 
Wistar rats were treated three times per week 
with inhalative CCl4 for induction of cirrhosis. 
B, MGO levels were significantly elevated in 
cirrhosis, indicated by ELISA-analysis. C, 
Wistar rats were treated with CCl4 and i.p. EP 
or saline from week 8-12. Sirius red staining 
indicated significantly less fibrosis in EP 
treated animals. * p<0.05, ** p<0.01, *** 
p<0.001. Adapted from 82. 
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