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Abstract 

For modern linkage studies involving many small 

families, there exists an efficient estimator of disease 

gene location (denoted ) that averages location 

estimates computed from random subsamples of the data. 

This estimator has lower mean squared error than 

competing estimators and yields narrower confidence 

intervals (CIs) as well. However, when the number of 

families is small and the pedigree structure is large 

(possibly extended), the computational feasibility and 

statistical properties of  are not known. Using 

simulation and real data, this research shows that (for 

this extremely important but often overlooked study 

design), CIs based on  are narrower than CIs based on 

a single subsample, and that the corresponding percent 

reduction in CI length is bounded above by the square 

root of the percent reduction in variance. As a proof of 

principle,  was applied to the dense SNP data of four 

large, extended, specific language impairment (SLI) 

pedigrees, and the single subsample CI was reduced by 

18%. In summary, confidence intervals based on  

should minimize re-sequencing costs beneath linkage 

peaks, and should reduce the number of  genes to 

investigate in follow-up candidate gene studies. 
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Introduction 

Modern linkage studies are extremely 

effective at identifying and defining 

genetic loci (i.e. broad chromosomal 

regions) that influence highly heritable 

traits[2-5]. But, identifying the disease 

gene(s) within a genetic locus is often 

difficult, expensive, and slow because 

the number of candidate genes spanned 

by a genetic locus is typically large. 

Here, the simple and efficient estimator 

of disease gene location (denoted ) that 

was first introduced by Stewart et al.[1] 

for studies involving a large number of 

small families genotyped on a dense 

panel of SNPs (single nucleotide 

polymorphisms) is extended. Because of 

these extensions, CIs (confidence 

intervals) based on  can now be 

constructed from studies involving a 

small number of large families, which 

can reduce the size of the region 

implicated by a single subsample CI by 

more than 18 percent (see Results). 

 

Most modern linkage studies contain 

high-throughput genotype data on 

millions of roughly equi-spaced SNPs. 

Although these dense SNP panels are 

considerably informative for linkage[6], 

SNPs in close proximity to one another 

are correlated, which can negatively 

affect the precision and accuracy of 

estimators of disease gene location[1]. 

The correlation between SNPs is known 

as linkage disequilibrium (LD), and in 

practice, the most effective solution is to 

consider one or more LE (linkage 

equilibrium) subsamples of the dense 

SNP data. Within each LE subsample, 

the SNPs are approximately 

uncorrelated; and because the 

intervening dense SNPs contain very 

little additional information about 

inheritance, each LE subsample retains 

almost all of the original information for 

linkage. Moreover, the maximum 

likelihood estimator of θ  (denoted θ̂ ), 

which is based on a single LE 

subsample, remains consistent.  

 

For modern linkage studies involving a 

large number of small families, one can 

substantially improve the precision of 

single subsample estimation by 

averaging location estimates over 

multiple subsamples. For example, an 

accurate estimate of the variance of  

(denoted τ 2) follows from the sequence 

, where each  is 

computed from the j
th 

bootstrap 

resample. The resampling occurs over 
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independent families, and ( ) is 

an approximate but efficient 95% CI for 

θ  that leverages the information on trait 

location contained in LE subsamples of 

the original dense SNP data. By contrast, 

the nonparametric bootstrap procedure is 

no longer valid for studies involving a 

small number of large families; 

therefore, although the computation of  

remains straightforward, a new approach 

is needed to compute τ 2  for a small 

number of large families. 

 

In Methods, a formal definition of  is 

given, and key mathematical 

relationships between various statistical 

quantities of interest are established. 

These relationships can inform the 

estimation (or approximation) of τ 2 , and 

shed light on the efficiency gains of CIs 

based on  relative to CIs based on θ̂ . 

In Results, the two estimators are 

compared using data  simulated under a 

variety of trait models with a realistic 

pattern of LD. As proof of principle,  

was applied to three large, extended 

specific language impairment (SLI) 

pedigrees. Finally, some of the 

limitations, and several potentially high-

impact implications of the proposed 

estimator and its corresponding CI are 

discussed. 

 

Methods 

For a dense SNP linkage study, let 

G and Tbe the multilocus genotype and 

trait data, respectively. Ideally, inference 

about θ  should be made on the basis of 

the observed-data likelihood: 

L(θ;G,T,φ) , where θ represents the 

location of a hypothesized trait locus, 

and φ represents all other parameters in 

the analysis (e.g. LD structure, trait 

model, gene frequencies, genetic map, 

etc.). In the presence of LD and missing 

data, the observed-data likelihood is 

computationally feasible only for small 

to moderate sized pedigrees, and only 

when the LD structure is assumed to 

follow a haplotype-block model[7]. 

These constraints are quite restrictive, 

and as such, inference about θ  is usually 

made on the basis of the transformed-

data likelihood: L(θ;M,T,φ)
1

, where 

M ≡ h(G, S) is a random LE subsample 

of G that retains the genotypes of SNPs 

in the random subpanel S . The SNPs in 

                                                        
1 In the case of nonparametric 

likelihoods, L(θ;M,T,φ) is usually 

replaced by the Kong & Cox 

likelihood: L(δ̂;M, T,θ )[8].  
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S  are intentionally chosen to be 

approximately uncorrelated (i.e. in LE), 

so that L(θ;M,T,φ)  is computationally 

feasible, even for large, extended 

pedigrees.  

 

In practice, the unknown φ  is replaced 

by a consistent estimate φ̂  and estimates 

of θ (and CIs for θ) are based on the 

argmaxθ L(θ;M, T,φ̂) , which depends on 

a single (randomly chosen) LE 

subsample and approximates θ̂  for a 

large number of parent-offspring 

transmissions among affected families. 

However for modern linkage studies, the 

number of approximately uncorrelated 

subpanels is large, and because each 

corresponding subsample provides 

slightly different information about θ, an 

estimator that combines information 

from multiple LE subsamples should 

outperform one that does not (i.e. θ̂ ). 

Let’s define , then the 

following equation shows that increased 

precision is guaranteed: 

 

                                 

 

Var(θ̂ (M)) = Var(E[θ̂ | G])+ E[Var(θ̂ | G)].                                  Eq. 1 

 

In words, Eq. (1) says that the variance 

of θ̂  is equal to the variance of  plus 

the average Monte Carlo error, where 

the Monte Carlo error refers to the 

conditional variance of θ̂  over LE 

subsamples M  given dense SNP data, 

G . Note that while an LD model is not 

needed to generate iid realizations of M  

(unconditionally, or conditionally for a 

given S ), Var(θ̂ (M)) ≠ Var(θ̂(M) | S), as 

common practice would suggest. 

Moreover, Eq. (1) implies that 

, which 

together with the previously mentioned 

note, implies that the real obstacle to 

constructing narrower CIs based  is 

evaluation of the outer expectation, as 

this computation does require an LD 

model. For modern linkage studies with 

large families, this computation is not 

feasible.  Therefore, an upper bound on 

 is attractive, especially if it is 

strictly less than Var(θ̂ ) , and does not 

require an LD model.  

 

Remarkably, one such upper bound 
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exists: the minimum of 

 To under-

stand why this is a useful upper bound, it 

is helpful to recast the problem as a 

random effects model:  

 

,                                                                               Eq. 2  

 

where ε(G, S)  is the random effect of 

subpanel S  on the dense SNP data G . 

By fixing S , and considering the 

variation attributable to G , Eq. 2 

implies that 

                                     

 

,                                                                                Eq. 3 

 

where γ 2 = Var(ε | S) . Note that, the 

minimum of  

is strictly less than the average of 

 (which by 

definition is the variance of θ̂ ). 

Furthermore,  the minimum of 

can be 

computed (or estimated) without an LD 

model. 

 

Data Description 

To quantify the potential gains in 

precision of  over θ̂ , simulated data 

and real dense SNP linkage data on 

extended families were analyzed. 

Dominant and recessive trait models 

with incomplete penetrance were 

simulated separately, and each trait locus 

was positioned in the middle of 132 

equi-spaced haplotype-blocks (average 

spacing 0.5 centi-Morgans between each 

block). Each block was comprised of 3 

SNPs, with each SNP separated by 0.25 

centi-Morgans (cMs). For the dominant 

trait model, a disease allele frequency of 

1%, a phenocopy rate of 1%, and a 

penetrance of 20% were assumed; each 

replicate dense SNP data set contained 

five 3-generation families (Figure 1). As 

for the recessive trait, the corresponding 

parameters were10%, 1%, and 50%, 

respectively. Each replicate dense SNP 

linkage data set with the recessive trait 

model contained seven 3-generation 

families (Figure 2).  
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Figure 1 

 

Figure 1: The pedigree structure used for simulating dense SNP data linked to a dominant trait 

with incomplete penetrance and LD. The question mark symbol “?” denotes individuals who are 

unobserved for both genotypic and phenotypic data. Filled shapes represent affected individuals, 

and unfilled shapes represent unaffected individuals.  

 

Figure 2 

 

Figure 2: The pedigree structure used for simulating dense SNP data linked to a recessive trait 

with incomplete penetrance and LD. The question mark symbol “?” denotes individuals who are 

unobserved for both genotypic and phenotypic data. Filled shapes represent affected individuals, 

and unfilled shapes represent unaffected individuals.  

 

Note that, in a haplotype-block model, 

the blocks are uncorrelated, but the 

SNPs within each block are highly 

correlated. The LD pattern used in the 

simulations (Figure 3) mimicked the 

empirical LD pattern used in Stewart et 

al. [1]. With this model and these 

parameters, the outer expectation (and 

variances) in Eq. (1) were estimated 

based on 20,000 independent replicates 



Internal Medicine Review  Using High-Throughput Genotyping and Large Families to 

Reduce Sequencing Costs  December 2016 

7 

Copyright 2016 Internal Medicine Review. All Rights Reserved 

 

of dense SNP data G , which allowed us 

to quantify the gains in precision of  

over θ̂ .  

 

 

Figure 3 
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Figure 3: Absolute D-prime as a function of 395 contiguous SNP-SNP intervals comprising 132 

haplotype blocks, with 3 SNPs per block. 

 

In the real data analysis, involving 3 

extended multiplex SLI pedigrees[9] 

containing 165 individuals, with 105 

subjects genotyped at 8,736 SNPs 

spanning chromosome 13 (132 cMs), the 

outer expectation in Eq. (1) is not 

computationally feasible. Therefore, the 

proposed upper bound on  (as 

described in Methods) was used to 
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estimate the gain in precision. Because 

L(θ;M,T, φ̂)  is computationally 

intractable for the SLI data, the Markov 

chain Monte Carlo (MCMC) program 

LM_MARKERS[10] was used to obtain 

θ̂  and ; this program is just one of 

several in the MORGAN suite. In 

computing , the average was taken 

over 20 LE subpanels, and each 

subpanel was sampled conditional on the 

observed dense SNP data G using the 

program EAGLET[1, 4, 11-13]. 

 

Results 

From the analysis of simulated data, 

there is excellent agreement with Eq. (1) 

for dense SNP linkage studies involving 

large (possibly extended) multiplex 

families with missing data (Table 1). 

Note that, in Table 1, the estimator of 

Var(θ̂ )  is the average of 

 for k = 20. 

 

Table 1: Decomposing the Variance of θ̂  

Trait Model Var(θ̂ )   E[Var(θ̂ | G)] 

Dominant 46.39 38.43 8.84 

Recessive 63.13 53.01 11.24 

 

Furthermore, given that the simulated 

LD model mimics the LD-pattern of a 

real data set, it is not unreasonable to 

expect precision gains (i.e. reductions in 

variance) in the neighborhood of 15-20 

percent (Table 1). Similarly, the 95% 

CIs based on  are 10% and 9% 

narrower than the 95% CIs based on θ̂ , 

for dominant and recessive models 

respectively. Interestingly, under the 

assumption that θ̂  and  are each 

normally distributed with mean θ , it 

follows from Eq. (1) that the percent 

reduction in CI length is bounded above 

by the square root of the percent 

reduction in variance. Hence, the percent 

reduction in CI length tends to be large 

when, relative to the variance of , the 

average Monte Carlo error is large. 

 

From the analysis of the real SLI data, 

the original 95% CI was narrowed from 

10.9 cMs[14] to 8.9 cMs (Figure 4). 

Because the 105 genes of the original CI 
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are not evenly distributed, the 18% 

reduction in CI length corresponds (in 

this case) to a 9.5% reduction in the 

number of candidate genes. However, it 

is noteworthy that the 95% CI based on 

 does not include an interesting 

biological candidate PCDH9 

(protocadherin 9), suggesting that the re-

sequencing of other genes beneath this 

peak should take priority. 

 

Figure 4 
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Figure 4: The solid curve is the average lod score, where the average is taken over 20 random 

subsamples. The dotted gray curves are the lod scores from each of the 20 subsamples. The solid 

and gray intervals are the 95% CIs based on the proposed estimator and a single subsample, 

respectively. 

 

Discussion 

This research has shown that the simple, 

but efficient estimator of trait location, 

first proposed by Stewart et al.[1] for 

modern linkage studies involving a large 

number of small families, can also be 

used to obtain narrower confidence 

intervals for studies involving a small 

number of large (possibly extended) 

pedigrees. This research also showed 

that gains in precision are possible, 

despite the fact that the observed-data 
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likelihood: L(θ;G,T, φ̂) is intractable for 

large families in the presence of missing 

data and LD. That said, an important 

area of open research involves the 

development of methods to compute (or 

simulate) L(θ;G,T, φ̂)  on arbitrary 

pedigrees across a wide range of LD 

patterns. Such methods should maximize 

the gain in precision, which in turn, 

should lead to the greatest reduction in 

candidate gene re-sequencing costs. 

 

Although a method for constructing 

narrow CIs from modern linkage studies 

containing a mixture of many small and 

several large families has not yet been 

devised, one could easily imagine 

implementing either a pooled data 

approach, or a meta-analysis approach. 

Conceptually, the pooled data approach 

is simpler because all of the data could 

be analyzed jointly by LM_MARKERS, 

which uses exact calculation where 

possible and MCMC otherwise. 

However, given that (which is based 

on large families) and (which is based 

on small families) are both 

approximately normally distributed, a 

meta-analysis approach that averages  

and  with weights that vary inversely 

in proportion to their marginal variances 

is straightforward too. Moreover, it’s not 

immediately clear which approach 

would be better, or that the difference (if 

any) would have any practical 

importance with respect to follow-up re-

sequencing or fine-mapping efforts. 

 

Finally, given the number of existing 

orphan linkage peaks (i.e. the 

approximately 3000 linkage peaks for 

highly heritable traits for which no 

known disease gene has yet been 

found[15]), and given the affordability 

of genome-wide genotyping and whole-

exome sequencing, these two 

technologies could be paired with the 

proposed estimator of trait location to 

substantially expedite the rate at which 

disease genes are discovered, while 

simultaneously reducing the overall 

costs. In principle, 95% CIs based on  

should facilitate progress on the much 

more difficult, and more widely spread, 

problem of identifying non-exonic 

pathogenic variants for complex traits. 
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Web Resources 

The URLs for software used in this 

research are: 

EAGLET    

http://u.osu.edu/stewart.1212   

MERLIN     

http://csg.sph.umich.edu/abecasis/Merlin

/download  

MORGAN  

https://www.stat.washington.edu/thomps

on/Genepi/pangaea.shtml 
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