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Abstract 

 Human erythrocytes participate in the regulation of 

vascular diameter in the microcirculation through the controlled 

release of the vasodilator adenosine triphosphate (ATP) in 

response to physiological stimuli, including exposure to low 

oxygen tension as occurs in the microcirculation of skeletal 

muscle.  The localized release of this vasodilator has been 

suggested to be an important mechanism for matching perfusion 

(oxygen delivery) with need in this tissue.  However, in certain 

diseases, such as type 2 diabetes (DM2), the ability of 

erythrocytes to release ATP in response to this stimulus is 

severely compromised.  This defect in erythrocyte physiology 

could contribute to impairment of vasodilation in the peripheral 

circulation leading to vascular insufficiency and delayed wound 

healing.  It has been shown that inhibitors of specific 

phosphodiesterases (PDEs) can augment low oxygen-induced 

ATP release from erythrocytes of humans with DM2.  However, 

these drugs are associated with serious side effects that limit their 

use in clinical medicine.   

 Here we summarize the evidence in support of the 

hypothesis that delivery of PDE3 inhibitors encapsulated in 

liposomes to erythrocytes could provide a new approach for the 

treatment of DM2.  In addition we report that inhibitors of PDE5 

can also rescue low oxygen-induced ATP release from DM2 

erythrocytes making this class of drugs another that could be 

targeted to erythrocytes.   
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Introduction: 

 It is estimated that there are more 

than 300 million individuals with type 2 

diabetes (DM2) world-wide making this 

disease a major public health challenge [1].  

Impaired vascular function is a significant 

complication of DM2 with cardiovascular 

disease accounting for nearly half of the 

deaths in humans with this condition [2,3].  

Individuals with DM2 have a four-fold 

increased risk for claudication [1] and as 

much as a sixteen-fold increased risk for 

lower limb amputation [3-6].  Although this 

vascular disease is, in part, the result of an 

increased incidence of atherosclerosis in 

large conduit vessels [16], there is also 

extensive evidence that microvascular 

circulatory control is abnormal in humans 

with DM2 [7-10].   

 Patients with DM2 have diminished 

muscle blood flow both at rest [9] and with 

exercise [10].  Although direct studies of the 

skeletal muscle microcirculation are not 

possible in humans, such studies have been 

undertaken in several animal models of 

diabetes [11-13].  These studies demonstrate 

marked reductions in: 1) oxygen delivery 

[11,12], 2) capillary erythrocyte flux [12] 

and 3) convective oxygen delivery and 

diffusive oxygen transport [11].  Taken 

together, these reports indicate that, in DM2, 

oxygen delivery to skeletal muscle in 

amounts required to appropriately meet 

metabolic need is impaired.   

 It has been suggested that both 

endothelium-dependent and endothelium-

independent vasodilation is impaired in 

humans with DM2 [14-18].  It has also been 

suggested that there is reduced nitric oxide 

(NO) synthesis [19], increased NO 

degradation [20] and/or abnormalities in the 

vascular smooth muscle [21] in these 

individuals.  These reports demonstrate that, 

although vasodilation in response to both 

pharmacological and physiological stimuli is 

impaired in humans with DM2, the 

mechanisms responsible for this impairment 

have not been fully characterized.   

 

Role of erythrocytes in the control of the 

distribution of perfusion in the 

microcirculation:  

 Although the erythrocyte is often 

considered to be primarily a cell dedicated 

to the transport and delivery of oxygen to 

the tissues, this cell has also been shown to 

participate in the regulation of vascular 

caliber [22-28].  In skeletal muscle, a critical 

stimulus for local dilation of blood vessels is 

the release of the vasodilator, adenosine 

triphosphate (ATP) from erythrocytes 

exposed to low oxygen tension [22-28].  
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Indeed, this property of erythrocytes to 

stimulate vasodilation specifically in areas 

of decreased oxygen tension (increased 

oxygen utilization relative to supply) can 

influence the distribution of blood flow in 

the microcirculation of skeletal muscle 

resulting in optimal matching of the delivery 

of oxygen with need [27-29].  In humans 

with type 2 diabetes (DM2), the ability of 

erythrocytes to release ATP in response to 

exposure to low oxygen tension is severely 

impaired [30-33].   

 

A signaling pathway for low oxygen-

induced ATP release from erythrocytes: 

 ATP is a highly charged molecule 

that does not freely cross cell membranes.  

Therefore, the regulated release of ATP 

from erythrocytes requires the presence of 

signaling pathways that respond to discrete 

stimuli (Figure 1).   Low oxygen tension-

induced ATP release requires activation of 

the heterotrimeric G-protein Gi [34].  In this 

signaling pathway, the next steps require 

sequential activation of adenylyl cyclase 

(AC) [35,36], protein kinase A (PKA) [37] 

and the cystic fibrosis transmembrane 

conductance regulator (CFTR) [38,39].  The 

final ATP conduit in this signaling pathway 

is pannexin 1[40].  Importantly, it has been 

shown that expression of a single Gi isoform 

(Gi2) is reduced in erythrocytes of humans 

with DM2 [30,31] and is associated with 

markedly reduced ATP release in response 

to exposure of these cells to low oxygen 

tension [31,32].  Although no mechanism to 

increase Gi2 expression in DM2 erythrocytes 

has been proposed, it has been reported that 

pharmacological approaches can increase 

the activity of the low oxygen signaling 

pathway for ATP release from these cells.  

 Cyclic AMP is a critical second 

messenger in pathways for ATP release 

from erythrocytes [35,36].  In all cells, 

cAMP levels must be tightly regulated to 

keep activation of signaling pathways and 

associated cellular responses discrete.  In the 

low oxygen pathway for ATP release from 

erythrocytes, levels of cAMP are regulated 

by phosphodiesterase 3 (PDE3) [41,42] 

(Figure 1).  Importantly, inhibitors of PDE3 

activity have been shown to potentiate 

cAMP levels and increase ATP release in 

response to low oxygen tension in 

erythrocytes of humans with DM2 [43].  

However, in clinical use, systemic 

administration of PDE3 inhibitors has been 

reported to have adverse cardiovascular 

effects that limit the use of such drugs in 

humans with DM2 [44].  If PDE3 inhibitors 

could be delivered selectively to 

erythrocytes, it is possible that such adverse 
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effects could be minimized.  One approach 

for the selective delivery of drugs to 

erythrocytes is via the use of liposomes [45].  

 

Liposome construction: 

 Liposomes may be composed of one 

or many bilayer membranes (unilamellar or 

multilamellar).  They can range in size from 

a few nanometers to several micrometers in 

diameter.  Measurement of liposomal size 

can be determined by several methods 

including light scatter [46], flow cytometry 

[47], and electron microscopy [48].  In 

addition to size, the number of membranes 

in a liposome can affect its ability to release 

its contents into a cell once it fuses with the 

membrane of the target cell [49]. 

 When constructing liposomes, 

different phospholipids can be selected on 

the basis of their charge to result in desired 

surface properties of the liposomal 

membrane.  The electrical charge of a 

liposome can affect its binding affinity for 

different cell types [49,50].  Specifically, 

negative charges appear to be beneficial for 

the fusion of liposomes with erythrocytes 

[48,49].  Although positive charges have 

also been used, the incidence of hemolysis 

of erythrocytes was increased under these 

conditions [48,51].   

 In addition to total charge, different 

lipids used to construct liposomes contain 

different numbers and/or arrangements of 

atoms as well as single or double bonds 

which allow these molecules to be even 

more individualized [49]. 

Cholesterol and other components 

are often added to liposomes to stabilize 

their membranes, to more closely model 

cellular membranes, and/or to alter binding 

or fusion of liposomes to cells [52,53].  

These alterations can affect the fluidity of 

the liposomal membrane.  Membrane 

fluidity strongly affects the likelihood of 

fusion between liposomes and cells [54].  

Importantly, liposomes with increased 

membrane fluidity were reported to display 

enhanced binding with erythrocytes [55].  

Other components that may be added to 

liposomes to enhance selective binding of 

liposomes to specific cell types or tissues 

include selective antibodies [56-58] or other 

molecules to decrease recognition of 

liposomes by the immune system [46].  In 

addition to the molecular constituents of 

liposomes, the medium in which liposomes 

and cells are incubated as well as the length 

of time, concentration, and temperature can 

also strongly influence the effectiveness of 

subsequent liposome-cell interactions and 

fusion events [52,59].  Thus, liposome-
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erythrocyte interactions are complex and not 

all liposome compositions are "erythrocyte-

friendly" [51, 59, 60].    

 

Liposomal delivery of a PDE inhibitor to 

human erythrocytes: Effect on low 

oxygen-induced ATP release:   

 Liposomes are capable of selectively 

delivering drugs to erythrocytes [59,61].  

Recently, the ability to use liposomes to 

target a PDE3 inhibitor to human eryth-

rocytes was shown by Dergunov, et al. [62].  

In this study it was established that 

liposomes composed of dimyristoyl-

phosphatidylcholine (DMPC): 1) have no 

adverse effect on erythrocyte morphology 

and 2) can transport the PDE3 inhibitor, 

cilostazol [62].  These investigators demo-

nstrated that erythrocytes of patients with 

DM2 did not release ATP in response to 

exposure to low oxygen in the presence of 

liposomes that did not contain cilostazol.  

However, in contrast, incubation of DM2 

erythrocytes with cilostazol-loaded lipo-

somes restored the physiological release of 

ATP to these cells in response to low 

oxygen tension [62].   

 

  

Potential role of PDE5 inhibitors in the 

regulation of low oxygen-induced ATP 

release from human erythrocytes: 

 It is important to note that, in 

addition to selective pharmacological 

agents, PDE3 is also inhibited endogenously 

by cGMP [63,64].  Human erythrocytes 

contain soluble guanylyl cyclase and 

generate cGMP [42,65].  In addition, these 

cells contain PDE5, a PDE that hydrolyzes 

cGMP [42] (Figure 1).   Thus, inhibition of 

PDE5 that results in increased cGMP levels 

in the erythrocyte would, in turn, inhibit 

PDE3 activity and increase low oxygen-

induced ATP release (Figure 1).  Here we 

report that that treatment of DM2 

erythrocytes with either of two chemically 

dissimilar PDE5 inhibitors (zaprinast or 

tadalafil) rescues the ability of these cells to 

release ATP when exposed to low oxygen 

tension (Figure 2).   Studies are currently 

underway to determine if PDE5 inhibitors 

can be incorporated into liposomes and 

targeted to human erythrocytes.
 

 

Summary: 

 Liposomal drug delivery has been 

studied for decades.  However, the challenge 

remains in finding the right combination of 

liposomal components to allow for the 

effective incorporation of specific drugs into 
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the liposome to provide selective delivery of 

the liposome-encapsulated drugs to 

erythrocytes.  The feasibility of this 

approach is confirmed by studies described 

here demonstrating that selective delivery of 

PDE3 inhibitors to DM2 erythrocytes can be 

effective in rescuing the physiological 

response (ATP release) to the stimulus of 

low oxygen tension.   We propose that 

liposomal delivery of drugs to the 

erythrocyte should be more seriously 

considered as a new therapeutic strategy for 

the treatment or management of the vascular 

disease associated with DM2. 
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Figure 1:  Proposed signaling pathway for low oxygen-induced ATP release from erythrocytes.  

Exposure to low oxygen results in activation of the heterotrimeric G protein, Gi.  This leads to activation 

of AC and an increase in cAMP that is regulated by PDE3 activity. Increases in cAMP activate PKA and, 

subsequently, CFTR.  The final conduit for ATP release in this pathway is pannexin 1.  

Abbreviations: Gi = heterotrimeric G protein, Gi; AC = adenylyl cyclase; ATP = adenosine triphosphate; 

cAMP = cyclic adenosine monophosphate; AMP = adenosine monophosphate; PKA = protein kinase A; 

CFTR = cystic fibrosis transmembrane conductance regulator; GTP = guanosine triphosphate; cGMP = 

cyclic guanosine monophosphate;  GMP = guanosine monophosphate; sGC = soluble guanylyl cyclase; 

PDE3 = phosphodiesterase 3; PDE5 = phosphodiesterase 5; (+) = activation and (−) = inhibition. 
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Figure 2: Effect of exposure to reduced oxygen (O2) tension on ATP release from erythrocytes of humans 

with DM2 in the absence and presence of the PDE5 inhibitors zapranast (10 µM) (panel A, n=6) or 

tadalafil (10 µM) (panel B, n=4), or their vehicle, dimethylformamide (DMF).  The methods have been 
described in detail previously (23, 32, 43)  Briefly, washed erythrocytes were diluted to a 20% hematocrit 

in a Ringers buffer containing bicarbonate, in mM; 4.7 KCl, 2.0 CaCl2, 140.5 NaCl, 1.2 MgSO4, 5.5 

glucose, 21.4 NaHCO3, 0.5% BSA, pH 7.4 at 37ºC (43).  Cells were equilibrated for 30 min with a gas 

mixture containing 15% O2, 6% CO2, balance N2 (pH = 7.41± 0.03, pCO2 = 36 ± 2 mm Hg and  pO2 = 
107 ± 5 mmHg; Normoxia) in a thin-film tonometer (model 237; Instrumentation Laboratory) in the 

absence and presence of blank liposomes (vehicle, black bars) of liposomes containing a PDE5 inhibitor 

(open bars).  The gas mixture was then changed to one containing 0% O2, 6% CO2, balance N2 (pH = 
7.42± 0.02, pCO2 = 38 ± 2 mm Hg and pO2 = 10 ± 1 mm Hg; Low O2). ATP release was determined 30 

min after exposure to 15% O2 and 10 min after exposure to 0% O2 using the luciferin-luciferase method 

(23,32,43) .  Values are the means ± SE.  Greater than respective normoxia value (* = p < 0.05. † = p < 
0.01). 

 


